관리-도구
편집 파일: cmath
// TR1 cmath -*- C++ -*- // Copyright (C) 2006-2018 Free Software Foundation, Inc. // // This file is part of the GNU ISO C++ Library. This library is free // software; you can redistribute it and/or modify it under the // terms of the GNU General Public License as published by the // Free Software Foundation; either version 3, or (at your option) // any later version. // This library is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // Under Section 7 of GPL version 3, you are granted additional // permissions described in the GCC Runtime Library Exception, version // 3.1, as published by the Free Software Foundation. // You should have received a copy of the GNU General Public License and // a copy of the GCC Runtime Library Exception along with this program; // see the files COPYING3 and COPYING.RUNTIME respectively. If not, see // <http://www.gnu.org/licenses/>. /** @file tr1/cmath * This is a TR1 C++ Library header. */ #ifndef _GLIBCXX_TR1_CMATH #define _GLIBCXX_TR1_CMATH 1 #pragma GCC system_header #include <cmath> #ifdef _GLIBCXX_USE_C99_MATH_TR1 #undef acosh #undef acoshf #undef acoshl #undef asinh #undef asinhf #undef asinhl #undef atanh #undef atanhf #undef atanhl #undef cbrt #undef cbrtf #undef cbrtl #undef copysign #undef copysignf #undef copysignl #undef erf #undef erff #undef erfl #undef erfc #undef erfcf #undef erfcl #undef exp2 #undef exp2f #undef exp2l #undef expm1 #undef expm1f #undef expm1l #undef fdim #undef fdimf #undef fdiml #undef fma #undef fmaf #undef fmal #undef fmax #undef fmaxf #undef fmaxl #undef fmin #undef fminf #undef fminl #undef hypot #undef hypotf #undef hypotl #undef ilogb #undef ilogbf #undef ilogbl #undef lgamma #undef lgammaf #undef lgammal #undef llrint #undef llrintf #undef llrintl #undef llround #undef llroundf #undef llroundl #undef log1p #undef log1pf #undef log1pl #undef log2 #undef log2f #undef log2l #undef logb #undef logbf #undef logbl #undef lrint #undef lrintf #undef lrintl #undef lround #undef lroundf #undef lroundl #undef nan #undef nanf #undef nanl #undef nearbyint #undef nearbyintf #undef nearbyintl #undef nextafter #undef nextafterf #undef nextafterl #undef nexttoward #undef nexttowardf #undef nexttowardl #undef remainder #undef remainderf #undef remainderl #undef remquo #undef remquof #undef remquol #undef rint #undef rintf #undef rintl #undef round #undef roundf #undef roundl #undef scalbln #undef scalblnf #undef scalblnl #undef scalbn #undef scalbnf #undef scalbnl #undef tgamma #undef tgammaf #undef tgammal #undef trunc #undef truncf #undef truncl #endif namespace std _GLIBCXX_VISIBILITY(default) { _GLIBCXX_BEGIN_NAMESPACE_VERSION namespace tr1 { #if _GLIBCXX_USE_C99_MATH_TR1 // Using declarations to bring names from libc's <math.h> into std::tr1. // types using ::double_t; using ::float_t; // functions using ::acosh; using ::acoshf; using ::acoshl; using ::asinh; using ::asinhf; using ::asinhl; using ::atanh; using ::atanhf; using ::atanhl; using ::cbrt; using ::cbrtf; using ::cbrtl; using ::copysign; using ::copysignf; using ::copysignl; using ::erf; using ::erff; using ::erfl; using ::erfc; using ::erfcf; using ::erfcl; using ::exp2; using ::exp2f; using ::exp2l; using ::expm1; using ::expm1f; using ::expm1l; using ::fdim; using ::fdimf; using ::fdiml; using ::fma; using ::fmaf; using ::fmal; using ::fmax; using ::fmaxf; using ::fmaxl; using ::fmin; using ::fminf; using ::fminl; using ::hypot; using ::hypotf; using ::hypotl; using ::ilogb; using ::ilogbf; using ::ilogbl; using ::lgamma; using ::lgammaf; using ::lgammal; using ::llrint; using ::llrintf; using ::llrintl; using ::llround; using ::llroundf; using ::llroundl; using ::log1p; using ::log1pf; using ::log1pl; using ::log2; using ::log2f; using ::log2l; using ::logb; using ::logbf; using ::logbl; using ::lrint; using ::lrintf; using ::lrintl; using ::lround; using ::lroundf; using ::lroundl; using ::nan; using ::nanf; using ::nanl; using ::nearbyint; using ::nearbyintf; using ::nearbyintl; using ::nextafter; using ::nextafterf; using ::nextafterl; using ::nexttoward; using ::nexttowardf; using ::nexttowardl; using ::remainder; using ::remainderf; using ::remainderl; using ::remquo; using ::remquof; using ::remquol; using ::rint; using ::rintf; using ::rintl; using ::round; using ::roundf; using ::roundl; using ::scalbln; using ::scalblnf; using ::scalblnl; using ::scalbn; using ::scalbnf; using ::scalbnl; using ::tgamma; using ::tgammaf; using ::tgammal; using ::trunc; using ::truncf; using ::truncl; #endif #if _GLIBCXX_USE_C99_MATH #if !_GLIBCXX_USE_C99_FP_MACROS_DYNAMIC /// Function template definitions [8.16.3]. template<typename _Tp> inline typename __gnu_cxx::__enable_if<__is_arithmetic<_Tp>::__value, int>::__type fpclassify(_Tp __f) { typedef typename __gnu_cxx::__promote<_Tp>::__type __type; return __builtin_fpclassify(FP_NAN, FP_INFINITE, FP_NORMAL, FP_SUBNORMAL, FP_ZERO, __type(__f)); } template<typename _Tp> inline typename __gnu_cxx::__enable_if<__is_arithmetic<_Tp>::__value, int>::__type isfinite(_Tp __f) { typedef typename __gnu_cxx::__promote<_Tp>::__type __type; return __builtin_isfinite(__type(__f)); } template<typename _Tp> inline typename __gnu_cxx::__enable_if<__is_arithmetic<_Tp>::__value, int>::__type isinf(_Tp __f) { typedef typename __gnu_cxx::__promote<_Tp>::__type __type; return __builtin_isinf(__type(__f)); } template<typename _Tp> inline typename __gnu_cxx::__enable_if<__is_arithmetic<_Tp>::__value, int>::__type isnan(_Tp __f) { typedef typename __gnu_cxx::__promote<_Tp>::__type __type; return __builtin_isnan(__type(__f)); } template<typename _Tp> inline typename __gnu_cxx::__enable_if<__is_arithmetic<_Tp>::__value, int>::__type isnormal(_Tp __f) { typedef typename __gnu_cxx::__promote<_Tp>::__type __type; return __builtin_isnormal(__type(__f)); } template<typename _Tp> inline typename __gnu_cxx::__enable_if<__is_arithmetic<_Tp>::__value, int>::__type signbit(_Tp __f) { typedef typename __gnu_cxx::__promote<_Tp>::__type __type; return __builtin_signbit(__type(__f)); } template<typename _Tp> inline typename __gnu_cxx::__enable_if<__is_arithmetic<_Tp>::__value, int>::__type isgreater(_Tp __f1, _Tp __f2) { typedef typename __gnu_cxx::__promote<_Tp>::__type __type; return __builtin_isgreater(__type(__f1), __type(__f2)); } template<typename _Tp> inline typename __gnu_cxx::__enable_if<__is_arithmetic<_Tp>::__value, int>::__type isgreaterequal(_Tp __f1, _Tp __f2) { typedef typename __gnu_cxx::__promote<_Tp>::__type __type; return __builtin_isgreaterequal(__type(__f1), __type(__f2)); } template<typename _Tp> inline typename __gnu_cxx::__enable_if<__is_arithmetic<_Tp>::__value, int>::__type isless(_Tp __f1, _Tp __f2) { typedef typename __gnu_cxx::__promote<_Tp>::__type __type; return __builtin_isless(__type(__f1), __type(__f2)); } template<typename _Tp> inline typename __gnu_cxx::__enable_if<__is_arithmetic<_Tp>::__value, int>::__type islessequal(_Tp __f1, _Tp __f2) { typedef typename __gnu_cxx::__promote<_Tp>::__type __type; return __builtin_islessequal(__type(__f1), __type(__f2)); } template<typename _Tp> inline typename __gnu_cxx::__enable_if<__is_arithmetic<_Tp>::__value, int>::__type islessgreater(_Tp __f1, _Tp __f2) { typedef typename __gnu_cxx::__promote<_Tp>::__type __type; return __builtin_islessgreater(__type(__f1), __type(__f2)); } template<typename _Tp> inline typename __gnu_cxx::__enable_if<__is_arithmetic<_Tp>::__value, int>::__type isunordered(_Tp __f1, _Tp __f2) { typedef typename __gnu_cxx::__promote<_Tp>::__type __type; return __builtin_isunordered(__type(__f1), __type(__f2)); } #endif #endif #if _GLIBCXX_USE_C99_MATH_TR1 /** Additional overloads [8.16.4]. * @{ */ // For functions defined in C++03 the additional overloads are already // declared in <cmath> so we can just re-declare them in std::tr1. using std::acos; using std::asin; using std::atan; using std::atan2; using std::ceil; using std::cos; using std::cosh; using std::exp; using std::floor; using std::fmod; using std::frexp; using std::ldexp; using std::log; using std::log10; using std::sin; using std::sinh; using std::sqrt; using std::tan; using std::tanh; #if __cplusplus >= 201103L // Since C++11, <cmath> defines additional overloads for these functions // in namespace std. using std::acosh; using std::asinh; using std::atanh; using std::cbrt; using std::copysign; using std::erf; using std::erfc; using std::exp2; using std::expm1; using std::fdim; using std::fma; using std::fmax; using std::fmin; using std::hypot; using std::ilogb; using std::lgamma; using std::llrint; using std::llround; using std::log1p; using std::log2; using std::logb; using std::lrint; using std::lround; using std::nan; using std::nearbyint; using std::nextafter; using std::nexttoward; using std::remainder; using std::remquo; using std::rint; using std::round; using std::scalbln; using std::scalbn; using std::tgamma; using std::trunc; #else // __cplusplus < 201103L // In C++03 we need to provide the additional overloads. #ifndef __CORRECT_ISO_CPP11_MATH_H_PROTO_FP inline float acosh(float __x) { return __builtin_acoshf(__x); } inline long double acosh(long double __x) { return __builtin_acoshl(__x); } #endif template<typename _Tp> inline typename __gnu_cxx::__enable_if<__is_integer<_Tp>::__value, double>::__type acosh(_Tp __x) { return __builtin_acosh(__x); } #ifndef __CORRECT_ISO_CPP11_MATH_H_PROTO_FP inline float asinh(float __x) { return __builtin_asinhf(__x); } inline long double asinh(long double __x) { return __builtin_asinhl(__x); } #endif template<typename _Tp> inline typename __gnu_cxx::__enable_if<__is_integer<_Tp>::__value, double>::__type asinh(_Tp __x) { return __builtin_asinh(__x); } #ifndef __CORRECT_ISO_CPP11_MATH_H_PROTO_FP inline float atanh(float __x) { return __builtin_atanhf(__x); } inline long double atanh(long double __x) { return __builtin_atanhl(__x); } #endif template<typename _Tp> inline typename __gnu_cxx::__enable_if<__is_integer<_Tp>::__value, double>::__type atanh(_Tp __x) { return __builtin_atanh(__x); } #ifndef __CORRECT_ISO_CPP11_MATH_H_PROTO_FP inline float cbrt(float __x) { return __builtin_cbrtf(__x); } inline long double cbrt(long double __x) { return __builtin_cbrtl(__x); } #endif template<typename _Tp> inline typename __gnu_cxx::__enable_if<__is_integer<_Tp>::__value, double>::__type cbrt(_Tp __x) { return __builtin_cbrt(__x); } #ifndef __CORRECT_ISO_CPP11_MATH_H_PROTO_FP inline float copysign(float __x, float __y) { return __builtin_copysignf(__x, __y); } inline long double copysign(long double __x, long double __y) { return __builtin_copysignl(__x, __y); } #endif template<typename _Tp, typename _Up> inline typename __gnu_cxx::__promote_2<_Tp, _Up>::__type copysign(_Tp __x, _Up __y) { typedef typename __gnu_cxx::__promote_2<_Tp, _Up>::__type __type; return copysign(__type(__x), __type(__y)); } #ifndef __CORRECT_ISO_CPP11_MATH_H_PROTO_FP inline float erf(float __x) { return __builtin_erff(__x); } inline long double erf(long double __x) { return __builtin_erfl(__x); } #endif template<typename _Tp> inline typename __gnu_cxx::__enable_if<__is_integer<_Tp>::__value, double>::__type erf(_Tp __x) { return __builtin_erf(__x); } #ifndef __CORRECT_ISO_CPP11_MATH_H_PROTO_FP inline float erfc(float __x) { return __builtin_erfcf(__x); } inline long double erfc(long double __x) { return __builtin_erfcl(__x); } #endif template<typename _Tp> inline typename __gnu_cxx::__enable_if<__is_integer<_Tp>::__value, double>::__type erfc(_Tp __x) { return __builtin_erfc(__x); } #ifndef __CORRECT_ISO_CPP11_MATH_H_PROTO_FP inline float exp2(float __x) { return __builtin_exp2f(__x); } inline long double exp2(long double __x) { return __builtin_exp2l(__x); } #endif template<typename _Tp> inline typename __gnu_cxx::__enable_if<__is_integer<_Tp>::__value, double>::__type exp2(_Tp __x) { return __builtin_exp2(__x); } #ifndef __CORRECT_ISO_CPP11_MATH_H_PROTO_FP inline float expm1(float __x) { return __builtin_expm1f(__x); } inline long double expm1(long double __x) { return __builtin_expm1l(__x); } #endif template<typename _Tp> inline typename __gnu_cxx::__enable_if<__is_integer<_Tp>::__value, double>::__type expm1(_Tp __x) { return __builtin_expm1(__x); } #ifndef __CORRECT_ISO_CPP11_MATH_H_PROTO_FP inline float fdim(float __x, float __y) { return __builtin_fdimf(__x, __y); } inline long double fdim(long double __x, long double __y) { return __builtin_fdiml(__x, __y); } #endif template<typename _Tp, typename _Up> inline typename __gnu_cxx::__promote_2<_Tp, _Up>::__type fdim(_Tp __x, _Up __y) { typedef typename __gnu_cxx::__promote_2<_Tp, _Up>::__type __type; return fdim(__type(__x), __type(__y)); } #ifndef __CORRECT_ISO_CPP11_MATH_H_PROTO_FP inline float fma(float __x, float __y, float __z) { return __builtin_fmaf(__x, __y, __z); } inline long double fma(long double __x, long double __y, long double __z) { return __builtin_fmal(__x, __y, __z); } #endif template<typename _Tp, typename _Up, typename _Vp> inline typename __gnu_cxx::__promote_3<_Tp, _Up, _Vp>::__type fma(_Tp __x, _Up __y, _Vp __z) { typedef typename __gnu_cxx::__promote_3<_Tp, _Up, _Vp>::__type __type; return fma(__type(__x), __type(__y), __type(__z)); } #ifndef __CORRECT_ISO_CPP11_MATH_H_PROTO_FP inline float fmax(float __x, float __y) { return __builtin_fmaxf(__x, __y); } inline long double fmax(long double __x, long double __y) { return __builtin_fmaxl(__x, __y); } #endif template<typename _Tp, typename _Up> inline typename __gnu_cxx::__promote_2<_Tp, _Up>::__type fmax(_Tp __x, _Up __y) { typedef typename __gnu_cxx::__promote_2<_Tp, _Up>::__type __type; return fmax(__type(__x), __type(__y)); } #ifndef __CORRECT_ISO_CPP11_MATH_H_PROTO_FP inline float fmin(float __x, float __y) { return __builtin_fminf(__x, __y); } inline long double fmin(long double __x, long double __y) { return __builtin_fminl(__x, __y); } #endif template<typename _Tp, typename _Up> inline typename __gnu_cxx::__promote_2<_Tp, _Up>::__type fmin(_Tp __x, _Up __y) { typedef typename __gnu_cxx::__promote_2<_Tp, _Up>::__type __type; return fmin(__type(__x), __type(__y)); } #ifndef __CORRECT_ISO_CPP11_MATH_H_PROTO_FP inline float hypot(float __x, float __y) { return __builtin_hypotf(__x, __y); } inline long double hypot(long double __x, long double __y) { return __builtin_hypotl(__x, __y); } #endif template<typename _Tp, typename _Up> inline typename __gnu_cxx::__promote_2<_Tp, _Up>::__type hypot(_Tp __y, _Up __x) { typedef typename __gnu_cxx::__promote_2<_Tp, _Up>::__type __type; return hypot(__type(__y), __type(__x)); } #ifndef __CORRECT_ISO_CPP11_MATH_H_PROTO_FP inline int ilogb(float __x) { return __builtin_ilogbf(__x); } inline int ilogb(long double __x) { return __builtin_ilogbl(__x); } #endif template<typename _Tp> inline typename __gnu_cxx::__enable_if<__is_integer<_Tp>::__value, int>::__type ilogb(_Tp __x) { return __builtin_ilogb(__x); } #ifndef __CORRECT_ISO_CPP11_MATH_H_PROTO_FP inline float lgamma(float __x) { return __builtin_lgammaf(__x); } inline long double lgamma(long double __x) { return __builtin_lgammal(__x); } #endif template<typename _Tp> inline typename __gnu_cxx::__enable_if<__is_integer<_Tp>::__value, double>::__type lgamma(_Tp __x) { return __builtin_lgamma(__x); } #ifndef __CORRECT_ISO_CPP11_MATH_H_PROTO_FP inline long long llrint(float __x) { return __builtin_llrintf(__x); } inline long long llrint(long double __x) { return __builtin_llrintl(__x); } #endif template<typename _Tp> inline typename __gnu_cxx::__enable_if<__is_integer<_Tp>::__value, long long>::__type llrint(_Tp __x) { return __builtin_llrint(__x); } #ifndef __CORRECT_ISO_CPP11_MATH_H_PROTO_FP inline long long llround(float __x) { return __builtin_llroundf(__x); } inline long long llround(long double __x) { return __builtin_llroundl(__x); } #endif template<typename _Tp> inline typename __gnu_cxx::__enable_if<__is_integer<_Tp>::__value, long long>::__type llround(_Tp __x) { return __builtin_llround(__x); } #ifndef __CORRECT_ISO_CPP11_MATH_H_PROTO_FP inline float log1p(float __x) { return __builtin_log1pf(__x); } inline long double log1p(long double __x) { return __builtin_log1pl(__x); } #endif template<typename _Tp> inline typename __gnu_cxx::__enable_if<__is_integer<_Tp>::__value, double>::__type log1p(_Tp __x) { return __builtin_log1p(__x); } // DR 568. #ifndef __CORRECT_ISO_CPP11_MATH_H_PROTO_FP inline float log2(float __x) { return __builtin_log2f(__x); } inline long double log2(long double __x) { return __builtin_log2l(__x); } #endif template<typename _Tp> inline typename __gnu_cxx::__enable_if<__is_integer<_Tp>::__value, double>::__type log2(_Tp __x) { return __builtin_log2(__x); } #ifndef __CORRECT_ISO_CPP11_MATH_H_PROTO_FP inline float logb(float __x) { return __builtin_logbf(__x); } inline long double logb(long double __x) { return __builtin_logbl(__x); } #endif template<typename _Tp> inline typename __gnu_cxx::__enable_if<__is_integer<_Tp>::__value, double>::__type logb(_Tp __x) { return __builtin_logb(__x); } #ifndef __CORRECT_ISO_CPP11_MATH_H_PROTO_FP inline long lrint(float __x) { return __builtin_lrintf(__x); } inline long lrint(long double __x) { return __builtin_lrintl(__x); } #endif template<typename _Tp> inline typename __gnu_cxx::__enable_if<__is_integer<_Tp>::__value, long>::__type lrint(_Tp __x) { return __builtin_lrint(__x); } #ifndef __CORRECT_ISO_CPP11_MATH_H_PROTO_FP inline long lround(float __x) { return __builtin_lroundf(__x); } inline long lround(long double __x) { return __builtin_lroundl(__x); } #endif template<typename _Tp> inline typename __gnu_cxx::__enable_if<__is_integer<_Tp>::__value, long>::__type lround(_Tp __x) { return __builtin_lround(__x); } #ifndef __CORRECT_ISO_CPP11_MATH_H_PROTO_FP inline float nearbyint(float __x) { return __builtin_nearbyintf(__x); } inline long double nearbyint(long double __x) { return __builtin_nearbyintl(__x); } #endif template<typename _Tp> inline typename __gnu_cxx::__enable_if<__is_integer<_Tp>::__value, double>::__type nearbyint(_Tp __x) { return __builtin_nearbyint(__x); } #ifndef __CORRECT_ISO_CPP11_MATH_H_PROTO_FP inline float nextafter(float __x, float __y) { return __builtin_nextafterf(__x, __y); } inline long double nextafter(long double __x, long double __y) { return __builtin_nextafterl(__x, __y); } #endif template<typename _Tp, typename _Up> inline typename __gnu_cxx::__promote_2<_Tp, _Up>::__type nextafter(_Tp __x, _Up __y) { typedef typename __gnu_cxx::__promote_2<_Tp, _Up>::__type __type; return nextafter(__type(__x), __type(__y)); } #ifndef __CORRECT_ISO_CPP11_MATH_H_PROTO_FP inline float nexttoward(float __x, long double __y) { return __builtin_nexttowardf(__x, __y); } inline long double nexttoward(long double __x, long double __y) { return __builtin_nexttowardl(__x, __y); } #endif template<typename _Tp> inline typename __gnu_cxx::__enable_if<__is_integer<_Tp>::__value, double>::__type nexttoward(_Tp __x, long double __y) { return __builtin_nexttoward(__x, __y); } #ifndef __CORRECT_ISO_CPP11_MATH_H_PROTO_FP inline float remainder(float __x, float __y) { return __builtin_remainderf(__x, __y); } inline long double remainder(long double __x, long double __y) { return __builtin_remainderl(__x, __y); } #endif template<typename _Tp, typename _Up> inline typename __gnu_cxx::__promote_2<_Tp, _Up>::__type remainder(_Tp __x, _Up __y) { typedef typename __gnu_cxx::__promote_2<_Tp, _Up>::__type __type; return remainder(__type(__x), __type(__y)); } #ifndef __CORRECT_ISO_CPP11_MATH_H_PROTO_FP inline float remquo(float __x, float __y, int* __pquo) { return __builtin_remquof(__x, __y, __pquo); } inline long double remquo(long double __x, long double __y, int* __pquo) { return __builtin_remquol(__x, __y, __pquo); } #endif template<typename _Tp, typename _Up> inline typename __gnu_cxx::__promote_2<_Tp, _Up>::__type remquo(_Tp __x, _Up __y, int* __pquo) { typedef typename __gnu_cxx::__promote_2<_Tp, _Up>::__type __type; return remquo(__type(__x), __type(__y), __pquo); } #ifndef __CORRECT_ISO_CPP11_MATH_H_PROTO_FP inline float rint(float __x) { return __builtin_rintf(__x); } inline long double rint(long double __x) { return __builtin_rintl(__x); } #endif template<typename _Tp> inline typename __gnu_cxx::__enable_if<__is_integer<_Tp>::__value, double>::__type rint(_Tp __x) { return __builtin_rint(__x); } #ifndef __CORRECT_ISO_CPP11_MATH_H_PROTO_FP inline float round(float __x) { return __builtin_roundf(__x); } inline long double round(long double __x) { return __builtin_roundl(__x); } #endif template<typename _Tp> inline typename __gnu_cxx::__enable_if<__is_integer<_Tp>::__value, double>::__type round(_Tp __x) { return __builtin_round(__x); } #ifndef __CORRECT_ISO_CPP11_MATH_H_PROTO_FP inline float scalbln(float __x, long __ex) { return __builtin_scalblnf(__x, __ex); } inline long double scalbln(long double __x, long __ex) { return __builtin_scalblnl(__x, __ex); } #endif template<typename _Tp> inline typename __gnu_cxx::__enable_if<__is_integer<_Tp>::__value, double>::__type scalbln(_Tp __x, long __ex) { return __builtin_scalbln(__x, __ex); } #ifndef __CORRECT_ISO_CPP11_MATH_H_PROTO_FP inline float scalbn(float __x, int __ex) { return __builtin_scalbnf(__x, __ex); } inline long double scalbn(long double __x, int __ex) { return __builtin_scalbnl(__x, __ex); } #endif template<typename _Tp> inline typename __gnu_cxx::__enable_if<__is_integer<_Tp>::__value, double>::__type scalbn(_Tp __x, int __ex) { return __builtin_scalbn(__x, __ex); } #ifndef __CORRECT_ISO_CPP11_MATH_H_PROTO_FP inline float tgamma(float __x) { return __builtin_tgammaf(__x); } inline long double tgamma(long double __x) { return __builtin_tgammal(__x); } #endif template<typename _Tp> inline typename __gnu_cxx::__enable_if<__is_integer<_Tp>::__value, double>::__type tgamma(_Tp __x) { return __builtin_tgamma(__x); } #ifndef __CORRECT_ISO_CPP11_MATH_H_PROTO_FP inline float trunc(float __x) { return __builtin_truncf(__x); } inline long double trunc(long double __x) { return __builtin_truncl(__x); } #endif template<typename _Tp> inline typename __gnu_cxx::__enable_if<__is_integer<_Tp>::__value, double>::__type trunc(_Tp __x) { return __builtin_trunc(__x); } #endif // __cplusplus < 201103L // @} #endif /* _GLIBCXX_USE_C99_MATH_TR1 */ // DR 550. What should the return type of pow(float,int) be? // NB: C++11 and TR1 != C++03. // We cannot do "using std::pow;" because that would bring in unwanted // pow(*, int) overloads in C++03, with the wrong return type. Instead we // define all the necessary overloads, but the std::tr1::pow(double, double) // overload cannot be provided here, because <tr1/math.h> would add it to // the global namespace where it would clash with ::pow(double,double) from // libc (revealed by the fix of PR c++/54537). // The solution is to forward std::tr1::pow(double,double) to // std::pow(double,double) via the function template below. See // the discussion about this issue here: // http://gcc.gnu.org/ml/gcc-patches/2012-09/msg01278.html #ifndef __CORRECT_ISO_CPP11_MATH_H_PROTO_FP inline float pow(float __x, float __y) { return std::pow(__x, __y); } inline long double pow(long double __x, long double __y) { return std::pow(__x, __y); } #endif template<typename _Tp, typename _Up> inline typename __gnu_cxx::__promote_2<_Tp, _Up>::__type pow(_Tp __x, _Up __y) { typedef typename __gnu_cxx::__promote_2<_Tp, _Up>::__type __type; return std::pow(__type(__x), __type(__y)); } #if __cplusplus >= 201103L // We also deal with fabs in a special way, because "using std::fabs;" // could bring in C++11's std::fabs<T>(const std::complex<T>&) with a // different return type from std::tr1::fabs<T>(const std::complex<T>&). // We define the necessary overloads, except std::tr1::fabs(double) which // could clash with ::fabs(double) from libc. // The function template handles double as well as integers, forwarding // to std::fabs. #ifndef __CORRECT_ISO_CPP_MATH_H_PROTO #ifndef __CORRECT_ISO_CPP11_MATH_H_PROTO_FP inline float fabs(float __x) { return __builtin_fabsf(__x); } inline long double fabs(long double __x) { return __builtin_fabsl(__x); } #endif #endif template<typename _Tp> inline typename __gnu_cxx::__promote<_Tp>::__type fabs(_Tp __x) { return std::fabs(__x); } #else // ! C++11 // For C++03 just use std::fabs as there is no overload for std::complex<>. using std::fabs; #endif // C++11 #if _GLIBCXX_USE_STD_SPEC_FUNCS /** * @defgroup tr1_math_spec_func Mathematical Special Functions * @ingroup numerics * * A collection of advanced mathematical special functions. * @{ */ using std::assoc_laguerref; using std::assoc_laguerrel; using std::assoc_laguerre; using std::assoc_legendref; using std::assoc_legendrel; using std::assoc_legendre; using std::betaf; using std::betal; using std::beta; using std::comp_ellint_1f; using std::comp_ellint_1l; using std::comp_ellint_1; using std::comp_ellint_2f; using std::comp_ellint_2l; using std::comp_ellint_2; using std::comp_ellint_3f; using std::comp_ellint_3l; using std::comp_ellint_3; using std::cyl_bessel_if; using std::cyl_bessel_il; using std::cyl_bessel_i; using std::cyl_bessel_jf; using std::cyl_bessel_jl; using std::cyl_bessel_j; using std::cyl_bessel_kf; using std::cyl_bessel_kl; using std::cyl_bessel_k; using std::cyl_neumannf; using std::cyl_neumannl; using std::cyl_neumann; using std::ellint_1f; using std::ellint_1l; using std::ellint_1; using std::ellint_2f; using std::ellint_2l; using std::ellint_2; using std::ellint_3f; using std::ellint_3l; using std::ellint_3; using std::expintf; using std::expintl; using std::expint; using std::hermitef; using std::hermitel; using std::hermite; using std::laguerref; using std::laguerrel; using std::laguerre; using std::legendref; using std::legendrel; using std::legendre; using std::riemann_zetaf; using std::riemann_zetal; using std::riemann_zeta; using std::sph_besself; using std::sph_bessell; using std::sph_bessel; using std::sph_legendref; using std::sph_legendrel; using std::sph_legendre; using std::sph_neumannf; using std::sph_neumannl; using std::sph_neumann; /* @} */ // tr1_math_spec_func #else // ! _GLIBCXX_USE_STD_SPEC_FUNCS } // namespace tr1 _GLIBCXX_END_NAMESPACE_VERSION } // namespace std #include <bits/stl_algobase.h> #include <limits> #include <tr1/type_traits> #include <tr1/gamma.tcc> #include <tr1/bessel_function.tcc> #include <tr1/beta_function.tcc> #include <tr1/ell_integral.tcc> #include <tr1/exp_integral.tcc> #include <tr1/legendre_function.tcc> #include <tr1/modified_bessel_func.tcc> #include <tr1/poly_hermite.tcc> #include <tr1/poly_laguerre.tcc> #include <tr1/riemann_zeta.tcc> namespace std _GLIBCXX_VISIBILITY(default) { _GLIBCXX_BEGIN_NAMESPACE_VERSION namespace tr1 { /** * @defgroup tr1_math_spec_func Mathematical Special Functions * @ingroup numerics * * A collection of advanced mathematical special functions. * @{ */ inline float assoc_laguerref(unsigned int __n, unsigned int __m, float __x) { return __detail::__assoc_laguerre<float>(__n, __m, __x); } inline long double assoc_laguerrel(unsigned int __n, unsigned int __m, long double __x) { return __detail::__assoc_laguerre<long double>(__n, __m, __x); } /// 5.2.1.1 Associated Laguerre polynomials. template<typename _Tp> inline typename __gnu_cxx::__promote<_Tp>::__type assoc_laguerre(unsigned int __n, unsigned int __m, _Tp __x) { typedef typename __gnu_cxx::__promote<_Tp>::__type __type; return __detail::__assoc_laguerre<__type>(__n, __m, __x); } inline float assoc_legendref(unsigned int __l, unsigned int __m, float __x) { return __detail::__assoc_legendre_p<float>(__l, __m, __x); } inline long double assoc_legendrel(unsigned int __l, unsigned int __m, long double __x) { return __detail::__assoc_legendre_p<long double>(__l, __m, __x); } /// 5.2.1.2 Associated Legendre functions. template<typename _Tp> inline typename __gnu_cxx::__promote<_Tp>::__type assoc_legendre(unsigned int __l, unsigned int __m, _Tp __x) { typedef typename __gnu_cxx::__promote<_Tp>::__type __type; return __detail::__assoc_legendre_p<__type>(__l, __m, __x); } inline float betaf(float __x, float __y) { return __detail::__beta<float>(__x, __y); } inline long double betal(long double __x, long double __y) { return __detail::__beta<long double>(__x, __y); } /// 5.2.1.3 Beta functions. template<typename _Tpx, typename _Tpy> inline typename __gnu_cxx::__promote_2<_Tpx, _Tpy>::__type beta(_Tpx __x, _Tpy __y) { typedef typename __gnu_cxx::__promote_2<_Tpx, _Tpy>::__type __type; return __detail::__beta<__type>(__x, __y); } inline float comp_ellint_1f(float __k) { return __detail::__comp_ellint_1<float>(__k); } inline long double comp_ellint_1l(long double __k) { return __detail::__comp_ellint_1<long double>(__k); } /// 5.2.1.4 Complete elliptic integrals of the first kind. template<typename _Tp> inline typename __gnu_cxx::__promote<_Tp>::__type comp_ellint_1(_Tp __k) { typedef typename __gnu_cxx::__promote<_Tp>::__type __type; return __detail::__comp_ellint_1<__type>(__k); } inline float comp_ellint_2f(float __k) { return __detail::__comp_ellint_2<float>(__k); } inline long double comp_ellint_2l(long double __k) { return __detail::__comp_ellint_2<long double>(__k); } /// 5.2.1.5 Complete elliptic integrals of the second kind. template<typename _Tp> inline typename __gnu_cxx::__promote<_Tp>::__type comp_ellint_2(_Tp __k) { typedef typename __gnu_cxx::__promote<_Tp>::__type __type; return __detail::__comp_ellint_2<__type>(__k); } inline float comp_ellint_3f(float __k, float __nu) { return __detail::__comp_ellint_3<float>(__k, __nu); } inline long double comp_ellint_3l(long double __k, long double __nu) { return __detail::__comp_ellint_3<long double>(__k, __nu); } /// 5.2.1.6 Complete elliptic integrals of the third kind. template<typename _Tp, typename _Tpn> inline typename __gnu_cxx::__promote_2<_Tp, _Tpn>::__type comp_ellint_3(_Tp __k, _Tpn __nu) { typedef typename __gnu_cxx::__promote_2<_Tp, _Tpn>::__type __type; return __detail::__comp_ellint_3<__type>(__k, __nu); } inline float cyl_bessel_if(float __nu, float __x) { return __detail::__cyl_bessel_i<float>(__nu, __x); } inline long double cyl_bessel_il(long double __nu, long double __x) { return __detail::__cyl_bessel_i<long double>(__nu, __x); } /// 5.2.1.8 Regular modified cylindrical Bessel functions. template<typename _Tpnu, typename _Tp> inline typename __gnu_cxx::__promote_2<_Tpnu, _Tp>::__type cyl_bessel_i(_Tpnu __nu, _Tp __x) { typedef typename __gnu_cxx::__promote_2<_Tpnu, _Tp>::__type __type; return __detail::__cyl_bessel_i<__type>(__nu, __x); } inline float cyl_bessel_jf(float __nu, float __x) { return __detail::__cyl_bessel_j<float>(__nu, __x); } inline long double cyl_bessel_jl(long double __nu, long double __x) { return __detail::__cyl_bessel_j<long double>(__nu, __x); } /// 5.2.1.9 Cylindrical Bessel functions (of the first kind). template<typename _Tpnu, typename _Tp> inline typename __gnu_cxx::__promote_2<_Tpnu, _Tp>::__type cyl_bessel_j(_Tpnu __nu, _Tp __x) { typedef typename __gnu_cxx::__promote_2<_Tpnu, _Tp>::__type __type; return __detail::__cyl_bessel_j<__type>(__nu, __x); } inline float cyl_bessel_kf(float __nu, float __x) { return __detail::__cyl_bessel_k<float>(__nu, __x); } inline long double cyl_bessel_kl(long double __nu, long double __x) { return __detail::__cyl_bessel_k<long double>(__nu, __x); } /// 5.2.1.10 Irregular modified cylindrical Bessel functions. template<typename _Tpnu, typename _Tp> inline typename __gnu_cxx::__promote_2<_Tpnu, _Tp>::__type cyl_bessel_k(_Tpnu __nu, _Tp __x) { typedef typename __gnu_cxx::__promote_2<_Tpnu, _Tp>::__type __type; return __detail::__cyl_bessel_k<__type>(__nu, __x); } inline float cyl_neumannf(float __nu, float __x) { return __detail::__cyl_neumann_n<float>(__nu, __x); } inline long double cyl_neumannl(long double __nu, long double __x) { return __detail::__cyl_neumann_n<long double>(__nu, __x); } /// 5.2.1.11 Cylindrical Neumann functions. template<typename _Tpnu, typename _Tp> inline typename __gnu_cxx::__promote_2<_Tpnu, _Tp>::__type cyl_neumann(_Tpnu __nu, _Tp __x) { typedef typename __gnu_cxx::__promote_2<_Tpnu, _Tp>::__type __type; return __detail::__cyl_neumann_n<__type>(__nu, __x); } inline float ellint_1f(float __k, float __phi) { return __detail::__ellint_1<float>(__k, __phi); } inline long double ellint_1l(long double __k, long double __phi) { return __detail::__ellint_1<long double>(__k, __phi); } /// 5.2.1.12 Incomplete elliptic integrals of the first kind. template<typename _Tp, typename _Tpp> inline typename __gnu_cxx::__promote_2<_Tp, _Tpp>::__type ellint_1(_Tp __k, _Tpp __phi) { typedef typename __gnu_cxx::__promote_2<_Tp, _Tpp>::__type __type; return __detail::__ellint_1<__type>(__k, __phi); } inline float ellint_2f(float __k, float __phi) { return __detail::__ellint_2<float>(__k, __phi); } inline long double ellint_2l(long double __k, long double __phi) { return __detail::__ellint_2<long double>(__k, __phi); } /// 5.2.1.13 Incomplete elliptic integrals of the second kind. template<typename _Tp, typename _Tpp> inline typename __gnu_cxx::__promote_2<_Tp, _Tpp>::__type ellint_2(_Tp __k, _Tpp __phi) { typedef typename __gnu_cxx::__promote_2<_Tp, _Tpp>::__type __type; return __detail::__ellint_2<__type>(__k, __phi); } inline float ellint_3f(float __k, float __nu, float __phi) { return __detail::__ellint_3<float>(__k, __nu, __phi); } inline long double ellint_3l(long double __k, long double __nu, long double __phi) { return __detail::__ellint_3<long double>(__k, __nu, __phi); } /// 5.2.1.14 Incomplete elliptic integrals of the third kind. template<typename _Tp, typename _Tpn, typename _Tpp> inline typename __gnu_cxx::__promote_3<_Tp, _Tpn, _Tpp>::__type ellint_3(_Tp __k, _Tpn __nu, _Tpp __phi) { typedef typename __gnu_cxx::__promote_3<_Tp, _Tpn, _Tpp>::__type __type; return __detail::__ellint_3<__type>(__k, __nu, __phi); } inline float expintf(float __x) { return __detail::__expint<float>(__x); } inline long double expintl(long double __x) { return __detail::__expint<long double>(__x); } /// 5.2.1.15 Exponential integrals. template<typename _Tp> inline typename __gnu_cxx::__promote<_Tp>::__type expint(_Tp __x) { typedef typename __gnu_cxx::__promote<_Tp>::__type __type; return __detail::__expint<__type>(__x); } inline float hermitef(unsigned int __n, float __x) { return __detail::__poly_hermite<float>(__n, __x); } inline long double hermitel(unsigned int __n, long double __x) { return __detail::__poly_hermite<long double>(__n, __x); } /// 5.2.1.16 Hermite polynomials. template<typename _Tp> inline typename __gnu_cxx::__promote<_Tp>::__type hermite(unsigned int __n, _Tp __x) { typedef typename __gnu_cxx::__promote<_Tp>::__type __type; return __detail::__poly_hermite<__type>(__n, __x); } inline float laguerref(unsigned int __n, float __x) { return __detail::__laguerre<float>(__n, __x); } inline long double laguerrel(unsigned int __n, long double __x) { return __detail::__laguerre<long double>(__n, __x); } /// 5.2.1.18 Laguerre polynomials. template<typename _Tp> inline typename __gnu_cxx::__promote<_Tp>::__type laguerre(unsigned int __n, _Tp __x) { typedef typename __gnu_cxx::__promote<_Tp>::__type __type; return __detail::__laguerre<__type>(__n, __x); } inline float legendref(unsigned int __n, float __x) { return __detail::__poly_legendre_p<float>(__n, __x); } inline long double legendrel(unsigned int __n, long double __x) { return __detail::__poly_legendre_p<long double>(__n, __x); } /// 5.2.1.19 Legendre polynomials. template<typename _Tp> inline typename __gnu_cxx::__promote<_Tp>::__type legendre(unsigned int __n, _Tp __x) { typedef typename __gnu_cxx::__promote<_Tp>::__type __type; return __detail::__poly_legendre_p<__type>(__n, __x); } inline float riemann_zetaf(float __x) { return __detail::__riemann_zeta<float>(__x); } inline long double riemann_zetal(long double __x) { return __detail::__riemann_zeta<long double>(__x); } /// 5.2.1.20 Riemann zeta function. template<typename _Tp> inline typename __gnu_cxx::__promote<_Tp>::__type riemann_zeta(_Tp __x) { typedef typename __gnu_cxx::__promote<_Tp>::__type __type; return __detail::__riemann_zeta<__type>(__x); } inline float sph_besself(unsigned int __n, float __x) { return __detail::__sph_bessel<float>(__n, __x); } inline long double sph_bessell(unsigned int __n, long double __x) { return __detail::__sph_bessel<long double>(__n, __x); } /// 5.2.1.21 Spherical Bessel functions. template<typename _Tp> inline typename __gnu_cxx::__promote<_Tp>::__type sph_bessel(unsigned int __n, _Tp __x) { typedef typename __gnu_cxx::__promote<_Tp>::__type __type; return __detail::__sph_bessel<__type>(__n, __x); } inline float sph_legendref(unsigned int __l, unsigned int __m, float __theta) { return __detail::__sph_legendre<float>(__l, __m, __theta); } inline long double sph_legendrel(unsigned int __l, unsigned int __m, long double __theta) { return __detail::__sph_legendre<long double>(__l, __m, __theta); } /// 5.2.1.22 Spherical associated Legendre functions. template<typename _Tp> inline typename __gnu_cxx::__promote<_Tp>::__type sph_legendre(unsigned int __l, unsigned int __m, _Tp __theta) { typedef typename __gnu_cxx::__promote<_Tp>::__type __type; return __detail::__sph_legendre<__type>(__l, __m, __theta); } inline float sph_neumannf(unsigned int __n, float __x) { return __detail::__sph_neumann<float>(__n, __x); } inline long double sph_neumannl(unsigned int __n, long double __x) { return __detail::__sph_neumann<long double>(__n, __x); } /// 5.2.1.23 Spherical Neumann functions. template<typename _Tp> inline typename __gnu_cxx::__promote<_Tp>::__type sph_neumann(unsigned int __n, _Tp __x) { typedef typename __gnu_cxx::__promote<_Tp>::__type __type; return __detail::__sph_neumann<__type>(__n, __x); } /* @} */ // tr1_math_spec_func #endif // _GLIBCXX_USE_STD_SPEC_FUNCS } // namespace tr1 _GLIBCXX_END_NAMESPACE_VERSION } // namespace std #if _GLIBCXX_USE_STD_SPEC_FUNCS && !defined(__STRICT_ANSI__) namespace std _GLIBCXX_VISIBILITY(default) { _GLIBCXX_BEGIN_NAMESPACE_VERSION namespace tr1 { using __gnu_cxx::conf_hypergf; using __gnu_cxx::conf_hypergl; using __gnu_cxx::conf_hyperg; using __gnu_cxx::hypergf; using __gnu_cxx::hypergl; using __gnu_cxx::hyperg; } // namespace tr1 _GLIBCXX_END_NAMESPACE_VERSION } // namespace std #else // ! (_GLIBCXX_USE_STD_SPEC_FUNCS && !defined(__STRICT_ANSI__)) #include <bits/stl_algobase.h> #include <limits> #include <tr1/type_traits> #include <tr1/hypergeometric.tcc> namespace std _GLIBCXX_VISIBILITY(default) { _GLIBCXX_BEGIN_NAMESPACE_VERSION namespace tr1 { inline float conf_hypergf(float __a, float __c, float __x) { return __detail::__conf_hyperg<float>(__a, __c, __x); } inline long double conf_hypergl(long double __a, long double __c, long double __x) { return __detail::__conf_hyperg<long double>(__a, __c, __x); } /// 5.2.1.7 Confluent hypergeometric functions. template<typename _Tpa, typename _Tpc, typename _Tp> inline typename __gnu_cxx::__promote_3<_Tpa, _Tpc, _Tp>::__type conf_hyperg(_Tpa __a, _Tpc __c, _Tp __x) { typedef typename __gnu_cxx::__promote_3<_Tpa, _Tpc, _Tp>::__type __type; return __detail::__conf_hyperg<__type>(__a, __c, __x); } inline float hypergf(float __a, float __b, float __c, float __x) { return __detail::__hyperg<float>(__a, __b, __c, __x); } inline long double hypergl(long double __a, long double __b, long double __c, long double __x) { return __detail::__hyperg<long double>(__a, __b, __c, __x); } /// 5.2.1.17 Hypergeometric functions. template<typename _Tpa, typename _Tpb, typename _Tpc, typename _Tp> inline typename __gnu_cxx::__promote_4<_Tpa, _Tpb, _Tpc, _Tp>::__type hyperg(_Tpa __a, _Tpb __b, _Tpc __c, _Tp __x) { typedef typename __gnu_cxx::__promote_4<_Tpa, _Tpb, _Tpc, _Tp>::__type __type; return __detail::__hyperg<__type>(__a, __b, __c, __x); } } // namespace tr1 _GLIBCXX_END_NAMESPACE_VERSION } // namespace std #endif // _GLIBCXX_USE_STD_SPEC_FUNCS && !defined(__STRICT_ANSI__) #endif // _GLIBCXX_TR1_CMATH