관리-도구
편집 파일: piecewise_constant_distribution.hpp
/* boost random/piecewise_constant_distribution.hpp header file * * Copyright Steven Watanabe 2011 * Distributed under the Boost Software License, Version 1.0. (See * accompanying file LICENSE_1_0.txt or copy at * http://www.boost.org/LICENSE_1_0.txt) * * See http://www.boost.org for most recent version including documentation. * * $Id$ */ #ifndef BOOST_RANDOM_PIECEWISE_CONSTANT_DISTRIBUTION_HPP_INCLUDED #define BOOST_RANDOM_PIECEWISE_CONSTANT_DISTRIBUTION_HPP_INCLUDED #include <vector> #include <numeric> #include <boost/assert.hpp> #include <boost/random/uniform_real.hpp> #include <boost/random/discrete_distribution.hpp> #include <boost/random/detail/config.hpp> #include <boost/random/detail/operators.hpp> #include <boost/random/detail/vector_io.hpp> #ifndef BOOST_NO_CXX11_HDR_INITIALIZER_LIST #include <initializer_list> #endif #include <boost/range/begin.hpp> #include <boost/range/end.hpp> namespace boost { namespace random { /** * The class @c piecewise_constant_distribution models a \random_distribution. */ template<class RealType = double, class WeightType = double> class piecewise_constant_distribution { public: typedef std::size_t input_type; typedef RealType result_type; class param_type { public: typedef piecewise_constant_distribution distribution_type; /** * Constructs a @c param_type object, representing a distribution * that produces values uniformly distributed in the range [0, 1). */ param_type() { _weights.push_back(WeightType(1)); _intervals.push_back(RealType(0)); _intervals.push_back(RealType(1)); } /** * Constructs a @c param_type object from two iterator ranges * containing the interval boundaries and the interval weights. * If there are less than two boundaries, then this is equivalent to * the default constructor and creates a single interval, [0, 1). * * The values of the interval boundaries must be strictly * increasing, and the number of weights must be one less than * the number of interval boundaries. If there are extra * weights, they are ignored. */ template<class IntervalIter, class WeightIter> param_type(IntervalIter intervals_first, IntervalIter intervals_last, WeightIter weight_first) : _intervals(intervals_first, intervals_last) { if(_intervals.size() < 2) { _intervals.clear(); _intervals.push_back(RealType(0)); _intervals.push_back(RealType(1)); _weights.push_back(WeightType(1)); } else { _weights.reserve(_intervals.size() - 1); for(std::size_t i = 0; i < _intervals.size() - 1; ++i) { _weights.push_back(*weight_first++); } } } #ifndef BOOST_NO_CXX11_HDR_INITIALIZER_LIST /** * Constructs a @c param_type object from an * initializer_list containing the interval boundaries * and a unary function specifying the weights. Each * weight is determined by calling the function at the * midpoint of the corresponding interval. * * If the initializer_list contains less than two elements, * this is equivalent to the default constructor and the * distribution will produce values uniformly distributed * in the range [0, 1). */ template<class T, class F> param_type(const std::initializer_list<T>& il, F f) : _intervals(il.begin(), il.end()) { if(_intervals.size() < 2) { _intervals.clear(); _intervals.push_back(RealType(0)); _intervals.push_back(RealType(1)); _weights.push_back(WeightType(1)); } else { _weights.reserve(_intervals.size() - 1); for(std::size_t i = 0; i < _intervals.size() - 1; ++i) { RealType midpoint = (_intervals[i] + _intervals[i + 1]) / 2; _weights.push_back(f(midpoint)); } } } #endif /** * Constructs a @c param_type object from Boost.Range * ranges holding the interval boundaries and the weights. If * there are less than two interval boundaries, this is equivalent * to the default constructor and the distribution will produce * values uniformly distributed in the range [0, 1). The * number of weights must be one less than the number of * interval boundaries. */ template<class IntervalRange, class WeightRange> param_type(const IntervalRange& intervals_arg, const WeightRange& weights_arg) : _intervals(boost::begin(intervals_arg), boost::end(intervals_arg)), _weights(boost::begin(weights_arg), boost::end(weights_arg)) { if(_intervals.size() < 2) { _intervals.clear(); _intervals.push_back(RealType(0)); _intervals.push_back(RealType(1)); _weights.push_back(WeightType(1)); } } /** * Constructs the parameters for a distribution that approximates a * function. The range of the distribution is [xmin, xmax). This * range is divided into nw equally sized intervals and the weights * are found by calling the unary function f on the midpoints of the * intervals. */ template<class F> param_type(std::size_t nw, RealType xmin, RealType xmax, F f) { std::size_t n = (nw == 0) ? 1 : nw; double delta = (xmax - xmin) / n; BOOST_ASSERT(delta > 0); for(std::size_t k = 0; k < n; ++k) { _weights.push_back(f(xmin + k*delta + delta/2)); _intervals.push_back(xmin + k*delta); } _intervals.push_back(xmax); } /** Returns a vector containing the interval boundaries. */ std::vector<RealType> intervals() const { return _intervals; } /** * Returns a vector containing the probability densities * over all the intervals of the distribution. */ std::vector<RealType> densities() const { RealType sum = std::accumulate(_weights.begin(), _weights.end(), static_cast<RealType>(0)); std::vector<RealType> result; result.reserve(_weights.size()); for(std::size_t i = 0; i < _weights.size(); ++i) { RealType width = _intervals[i + 1] - _intervals[i]; result.push_back(_weights[i] / (sum * width)); } return result; } /** Writes the parameters to a @c std::ostream. */ BOOST_RANDOM_DETAIL_OSTREAM_OPERATOR(os, param_type, parm) { detail::print_vector(os, parm._intervals); detail::print_vector(os, parm._weights); return os; } /** Reads the parameters from a @c std::istream. */ BOOST_RANDOM_DETAIL_ISTREAM_OPERATOR(is, param_type, parm) { std::vector<RealType> new_intervals; std::vector<WeightType> new_weights; detail::read_vector(is, new_intervals); detail::read_vector(is, new_weights); if(is) { parm._intervals.swap(new_intervals); parm._weights.swap(new_weights); } return is; } /** Returns true if the two sets of parameters are the same. */ BOOST_RANDOM_DETAIL_EQUALITY_OPERATOR(param_type, lhs, rhs) { return lhs._intervals == rhs._intervals && lhs._weights == rhs._weights; } /** Returns true if the two sets of parameters are different. */ BOOST_RANDOM_DETAIL_INEQUALITY_OPERATOR(param_type) private: friend class piecewise_constant_distribution; std::vector<RealType> _intervals; std::vector<WeightType> _weights; }; /** * Creates a new @c piecewise_constant_distribution with * a single interval, [0, 1). */ piecewise_constant_distribution() { _intervals.push_back(RealType(0)); _intervals.push_back(RealType(1)); } /** * Constructs a piecewise_constant_distribution from two iterator ranges * containing the interval boundaries and the interval weights. * If there are less than two boundaries, then this is equivalent to * the default constructor and creates a single interval, [0, 1). * * The values of the interval boundaries must be strictly * increasing, and the number of weights must be one less than * the number of interval boundaries. If there are extra * weights, they are ignored. * * For example, * * @code * double intervals[] = { 0.0, 1.0, 4.0 }; * double weights[] = { 1.0, 1.0 }; * piecewise_constant_distribution<> dist( * &intervals[0], &intervals[0] + 3, &weights[0]); * @endcode * * The distribution has a 50% chance of producing a * value between 0 and 1 and a 50% chance of producing * a value between 1 and 4. */ template<class IntervalIter, class WeightIter> piecewise_constant_distribution(IntervalIter first_interval, IntervalIter last_interval, WeightIter first_weight) : _intervals(first_interval, last_interval) { if(_intervals.size() < 2) { _intervals.clear(); _intervals.push_back(RealType(0)); _intervals.push_back(RealType(1)); } else { std::vector<WeightType> actual_weights; actual_weights.reserve(_intervals.size() - 1); for(std::size_t i = 0; i < _intervals.size() - 1; ++i) { actual_weights.push_back(*first_weight++); } typedef discrete_distribution<std::size_t, WeightType> bins_type; typename bins_type::param_type bins_param(actual_weights); _bins.param(bins_param); } } #ifndef BOOST_NO_CXX11_HDR_INITIALIZER_LIST /** * Constructs a piecewise_constant_distribution from an * initializer_list containing the interval boundaries * and a unary function specifying the weights. Each * weight is determined by calling the function at the * midpoint of the corresponding interval. * * If the initializer_list contains less than two elements, * this is equivalent to the default constructor and the * distribution will produce values uniformly distributed * in the range [0, 1). */ template<class T, class F> piecewise_constant_distribution(std::initializer_list<T> il, F f) : _intervals(il.begin(), il.end()) { if(_intervals.size() < 2) { _intervals.clear(); _intervals.push_back(RealType(0)); _intervals.push_back(RealType(1)); } else { std::vector<WeightType> actual_weights; actual_weights.reserve(_intervals.size() - 1); for(std::size_t i = 0; i < _intervals.size() - 1; ++i) { RealType midpoint = (_intervals[i] + _intervals[i + 1]) / 2; actual_weights.push_back(f(midpoint)); } typedef discrete_distribution<std::size_t, WeightType> bins_type; typename bins_type::param_type bins_param(actual_weights); _bins.param(bins_param); } } #endif /** * Constructs a piecewise_constant_distribution from Boost.Range * ranges holding the interval boundaries and the weights. If * there are less than two interval boundaries, this is equivalent * to the default constructor and the distribution will produce * values uniformly distributed in the range [0, 1). The * number of weights must be one less than the number of * interval boundaries. */ template<class IntervalsRange, class WeightsRange> piecewise_constant_distribution(const IntervalsRange& intervals_arg, const WeightsRange& weights_arg) : _bins(weights_arg), _intervals(boost::begin(intervals_arg), boost::end(intervals_arg)) { if(_intervals.size() < 2) { _intervals.clear(); _intervals.push_back(RealType(0)); _intervals.push_back(RealType(1)); } } /** * Constructs a piecewise_constant_distribution that approximates a * function. The range of the distribution is [xmin, xmax). This * range is divided into nw equally sized intervals and the weights * are found by calling the unary function f on the midpoints of the * intervals. */ template<class F> piecewise_constant_distribution(std::size_t nw, RealType xmin, RealType xmax, F f) : _bins(nw, xmin, xmax, f) { if(nw == 0) { nw = 1; } RealType delta = (xmax - xmin) / nw; _intervals.reserve(nw + 1); for(std::size_t i = 0; i < nw; ++i) { _intervals.push_back(xmin + i * delta); } _intervals.push_back(xmax); } /** * Constructs a piecewise_constant_distribution from its parameters. */ explicit piecewise_constant_distribution(const param_type& parm) : _bins(parm._weights), _intervals(parm._intervals) { } /** * Returns a value distributed according to the parameters of the * piecewist_constant_distribution. */ template<class URNG> RealType operator()(URNG& urng) const { std::size_t i = _bins(urng); return uniform_real<RealType>(_intervals[i], _intervals[i+1])(urng); } /** * Returns a value distributed according to the parameters * specified by param. */ template<class URNG> RealType operator()(URNG& urng, const param_type& parm) const { return piecewise_constant_distribution(parm)(urng); } /** Returns the smallest value that the distribution can produce. */ result_type min BOOST_PREVENT_MACRO_SUBSTITUTION () const { return _intervals.front(); } /** Returns the largest value that the distribution can produce. */ result_type max BOOST_PREVENT_MACRO_SUBSTITUTION () const { return _intervals.back(); } /** * Returns a vector containing the probability density * over each interval. */ std::vector<RealType> densities() const { std::vector<RealType> result(_bins.probabilities()); for(std::size_t i = 0; i < result.size(); ++i) { result[i] /= (_intervals[i+1] - _intervals[i]); } return(result); } /** Returns a vector containing the interval boundaries. */ std::vector<RealType> intervals() const { return _intervals; } /** Returns the parameters of the distribution. */ param_type param() const { return param_type(_intervals, _bins.probabilities()); } /** Sets the parameters of the distribution. */ void param(const param_type& parm) { std::vector<RealType> new_intervals(parm._intervals); typedef discrete_distribution<std::size_t, WeightType> bins_type; typename bins_type::param_type bins_param(parm._weights); _bins.param(bins_param); _intervals.swap(new_intervals); } /** * Effects: Subsequent uses of the distribution do not depend * on values produced by any engine prior to invoking reset. */ void reset() { _bins.reset(); } /** Writes a distribution to a @c std::ostream. */ BOOST_RANDOM_DETAIL_OSTREAM_OPERATOR( os, piecewise_constant_distribution, pcd) { os << pcd.param(); return os; } /** Reads a distribution from a @c std::istream */ BOOST_RANDOM_DETAIL_ISTREAM_OPERATOR( is, piecewise_constant_distribution, pcd) { param_type parm; if(is >> parm) { pcd.param(parm); } return is; } /** * Returns true if the two distributions will return the * same sequence of values, when passed equal generators. */ BOOST_RANDOM_DETAIL_EQUALITY_OPERATOR( piecewise_constant_distribution, lhs, rhs) { return lhs._bins == rhs._bins && lhs._intervals == rhs._intervals; } /** * Returns true if the two distributions may return different * sequences of values, when passed equal generators. */ BOOST_RANDOM_DETAIL_INEQUALITY_OPERATOR(piecewise_constant_distribution) private: discrete_distribution<std::size_t, WeightType> _bins; std::vector<RealType> _intervals; }; } } #endif