관리-도구
편집 파일: bind_executor.hpp
// // bind_executor.hpp // ~~~~~~~~~~~~~~~~~ // // Copyright (c) 2003-2024 Christopher M. Kohlhoff (chris at kohlhoff dot com) // // Distributed under the Boost Software License, Version 1.0. (See accompanying // file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt) // #ifndef BOOST_ASIO_BIND_EXECUTOR_HPP #define BOOST_ASIO_BIND_EXECUTOR_HPP #if defined(_MSC_VER) && (_MSC_VER >= 1200) # pragma once #endif // defined(_MSC_VER) && (_MSC_VER >= 1200) #include <boost/asio/detail/config.hpp> #include <boost/asio/detail/type_traits.hpp> #include <boost/asio/associated_executor.hpp> #include <boost/asio/associator.hpp> #include <boost/asio/async_result.hpp> #include <boost/asio/execution/executor.hpp> #include <boost/asio/execution_context.hpp> #include <boost/asio/is_executor.hpp> #include <boost/asio/uses_executor.hpp> #include <boost/asio/detail/push_options.hpp> namespace boost { namespace asio { namespace detail { // Helper to automatically define nested typedef result_type. template <typename T, typename = void> struct executor_binder_result_type { protected: typedef void result_type_or_void; }; template <typename T> struct executor_binder_result_type<T, void_t<typename T::result_type>> { typedef typename T::result_type result_type; protected: typedef result_type result_type_or_void; }; template <typename R> struct executor_binder_result_type<R(*)()> { typedef R result_type; protected: typedef result_type result_type_or_void; }; template <typename R> struct executor_binder_result_type<R(&)()> { typedef R result_type; protected: typedef result_type result_type_or_void; }; template <typename R, typename A1> struct executor_binder_result_type<R(*)(A1)> { typedef R result_type; protected: typedef result_type result_type_or_void; }; template <typename R, typename A1> struct executor_binder_result_type<R(&)(A1)> { typedef R result_type; protected: typedef result_type result_type_or_void; }; template <typename R, typename A1, typename A2> struct executor_binder_result_type<R(*)(A1, A2)> { typedef R result_type; protected: typedef result_type result_type_or_void; }; template <typename R, typename A1, typename A2> struct executor_binder_result_type<R(&)(A1, A2)> { typedef R result_type; protected: typedef result_type result_type_or_void; }; // Helper to automatically define nested typedef argument_type. template <typename T, typename = void> struct executor_binder_argument_type {}; template <typename T> struct executor_binder_argument_type<T, void_t<typename T::argument_type>> { typedef typename T::argument_type argument_type; }; template <typename R, typename A1> struct executor_binder_argument_type<R(*)(A1)> { typedef A1 argument_type; }; template <typename R, typename A1> struct executor_binder_argument_type<R(&)(A1)> { typedef A1 argument_type; }; // Helper to automatically define nested typedefs first_argument_type and // second_argument_type. template <typename T, typename = void> struct executor_binder_argument_types {}; template <typename T> struct executor_binder_argument_types<T, void_t<typename T::first_argument_type>> { typedef typename T::first_argument_type first_argument_type; typedef typename T::second_argument_type second_argument_type; }; template <typename R, typename A1, typename A2> struct executor_binder_argument_type<R(*)(A1, A2)> { typedef A1 first_argument_type; typedef A2 second_argument_type; }; template <typename R, typename A1, typename A2> struct executor_binder_argument_type<R(&)(A1, A2)> { typedef A1 first_argument_type; typedef A2 second_argument_type; }; // Helper to perform uses_executor construction of the target type, if // required. template <typename T, typename Executor, bool UsesExecutor> class executor_binder_base; template <typename T, typename Executor> class executor_binder_base<T, Executor, true> { protected: template <typename E, typename U> executor_binder_base(E&& e, U&& u) : executor_(static_cast<E&&>(e)), target_(executor_arg_t(), executor_, static_cast<U&&>(u)) { } Executor executor_; T target_; }; template <typename T, typename Executor> class executor_binder_base<T, Executor, false> { protected: template <typename E, typename U> executor_binder_base(E&& e, U&& u) : executor_(static_cast<E&&>(e)), target_(static_cast<U&&>(u)) { } Executor executor_; T target_; }; } // namespace detail /// A call wrapper type to bind an executor of type @c Executor to an object of /// type @c T. template <typename T, typename Executor> class executor_binder #if !defined(GENERATING_DOCUMENTATION) : public detail::executor_binder_result_type<T>, public detail::executor_binder_argument_type<T>, public detail::executor_binder_argument_types<T>, private detail::executor_binder_base< T, Executor, uses_executor<T, Executor>::value> #endif // !defined(GENERATING_DOCUMENTATION) { public: /// The type of the target object. typedef T target_type; /// The type of the associated executor. typedef Executor executor_type; #if defined(GENERATING_DOCUMENTATION) /// The return type if a function. /** * The type of @c result_type is based on the type @c T of the wrapper's * target object: * * @li if @c T is a pointer to function type, @c result_type is a synonym for * the return type of @c T; * * @li if @c T is a class type with a member type @c result_type, then @c * result_type is a synonym for @c T::result_type; * * @li otherwise @c result_type is not defined. */ typedef see_below result_type; /// The type of the function's argument. /** * The type of @c argument_type is based on the type @c T of the wrapper's * target object: * * @li if @c T is a pointer to a function type accepting a single argument, * @c argument_type is a synonym for the return type of @c T; * * @li if @c T is a class type with a member type @c argument_type, then @c * argument_type is a synonym for @c T::argument_type; * * @li otherwise @c argument_type is not defined. */ typedef see_below argument_type; /// The type of the function's first argument. /** * The type of @c first_argument_type is based on the type @c T of the * wrapper's target object: * * @li if @c T is a pointer to a function type accepting two arguments, @c * first_argument_type is a synonym for the return type of @c T; * * @li if @c T is a class type with a member type @c first_argument_type, * then @c first_argument_type is a synonym for @c T::first_argument_type; * * @li otherwise @c first_argument_type is not defined. */ typedef see_below first_argument_type; /// The type of the function's second argument. /** * The type of @c second_argument_type is based on the type @c T of the * wrapper's target object: * * @li if @c T is a pointer to a function type accepting two arguments, @c * second_argument_type is a synonym for the return type of @c T; * * @li if @c T is a class type with a member type @c first_argument_type, * then @c second_argument_type is a synonym for @c T::second_argument_type; * * @li otherwise @c second_argument_type is not defined. */ typedef see_below second_argument_type; #endif // defined(GENERATING_DOCUMENTATION) /// Construct an executor wrapper for the specified object. /** * This constructor is only valid if the type @c T is constructible from type * @c U. */ template <typename U> executor_binder(executor_arg_t, const executor_type& e, U&& u) : base_type(e, static_cast<U&&>(u)) { } /// Copy constructor. executor_binder(const executor_binder& other) : base_type(other.get_executor(), other.get()) { } /// Construct a copy, but specify a different executor. executor_binder(executor_arg_t, const executor_type& e, const executor_binder& other) : base_type(e, other.get()) { } /// Construct a copy of a different executor wrapper type. /** * This constructor is only valid if the @c Executor type is constructible * from type @c OtherExecutor, and the type @c T is constructible from type * @c U. */ template <typename U, typename OtherExecutor> executor_binder(const executor_binder<U, OtherExecutor>& other, constraint_t<is_constructible<Executor, OtherExecutor>::value> = 0, constraint_t<is_constructible<T, U>::value> = 0) : base_type(other.get_executor(), other.get()) { } /// Construct a copy of a different executor wrapper type, but specify a /// different executor. /** * This constructor is only valid if the type @c T is constructible from type * @c U. */ template <typename U, typename OtherExecutor> executor_binder(executor_arg_t, const executor_type& e, const executor_binder<U, OtherExecutor>& other, constraint_t<is_constructible<T, U>::value> = 0) : base_type(e, other.get()) { } /// Move constructor. executor_binder(executor_binder&& other) : base_type(static_cast<executor_type&&>(other.get_executor()), static_cast<T&&>(other.get())) { } /// Move construct the target object, but specify a different executor. executor_binder(executor_arg_t, const executor_type& e, executor_binder&& other) : base_type(e, static_cast<T&&>(other.get())) { } /// Move construct from a different executor wrapper type. template <typename U, typename OtherExecutor> executor_binder(executor_binder<U, OtherExecutor>&& other, constraint_t<is_constructible<Executor, OtherExecutor>::value> = 0, constraint_t<is_constructible<T, U>::value> = 0) : base_type(static_cast<OtherExecutor&&>(other.get_executor()), static_cast<U&&>(other.get())) { } /// Move construct from a different executor wrapper type, but specify a /// different executor. template <typename U, typename OtherExecutor> executor_binder(executor_arg_t, const executor_type& e, executor_binder<U, OtherExecutor>&& other, constraint_t<is_constructible<T, U>::value> = 0) : base_type(e, static_cast<U&&>(other.get())) { } /// Destructor. ~executor_binder() { } /// Obtain a reference to the target object. target_type& get() noexcept { return this->target_; } /// Obtain a reference to the target object. const target_type& get() const noexcept { return this->target_; } /// Obtain the associated executor. executor_type get_executor() const noexcept { return this->executor_; } /// Forwarding function call operator. template <typename... Args> result_of_t<T(Args...)> operator()(Args&&... args) { return this->target_(static_cast<Args&&>(args)...); } /// Forwarding function call operator. template <typename... Args> result_of_t<T(Args...)> operator()(Args&&... args) const { return this->target_(static_cast<Args&&>(args)...); } private: typedef detail::executor_binder_base<T, Executor, uses_executor<T, Executor>::value> base_type; }; /// Associate an object of type @c T with an executor of type @c Executor. template <typename Executor, typename T> BOOST_ASIO_NODISCARD inline executor_binder<decay_t<T>, Executor> bind_executor(const Executor& ex, T&& t, constraint_t< is_executor<Executor>::value || execution::is_executor<Executor>::value > = 0) { return executor_binder<decay_t<T>, Executor>( executor_arg_t(), ex, static_cast<T&&>(t)); } /// Associate an object of type @c T with an execution context's executor. template <typename ExecutionContext, typename T> BOOST_ASIO_NODISCARD inline executor_binder<decay_t<T>, typename ExecutionContext::executor_type> bind_executor(ExecutionContext& ctx, T&& t, constraint_t< is_convertible<ExecutionContext&, execution_context&>::value > = 0) { return executor_binder<decay_t<T>, typename ExecutionContext::executor_type>( executor_arg_t(), ctx.get_executor(), static_cast<T&&>(t)); } #if !defined(GENERATING_DOCUMENTATION) template <typename T, typename Executor> struct uses_executor<executor_binder<T, Executor>, Executor> : true_type {}; namespace detail { template <typename TargetAsyncResult, typename Executor, typename = void> class executor_binder_completion_handler_async_result { public: template <typename T> explicit executor_binder_completion_handler_async_result(T&) { } }; template <typename TargetAsyncResult, typename Executor> class executor_binder_completion_handler_async_result< TargetAsyncResult, Executor, void_t<typename TargetAsyncResult::completion_handler_type >> { private: TargetAsyncResult target_; public: typedef executor_binder< typename TargetAsyncResult::completion_handler_type, Executor> completion_handler_type; explicit executor_binder_completion_handler_async_result( typename TargetAsyncResult::completion_handler_type& handler) : target_(handler) { } auto get() -> decltype(target_.get()) { return target_.get(); } }; template <typename TargetAsyncResult, typename = void> struct executor_binder_async_result_return_type { }; template <typename TargetAsyncResult> struct executor_binder_async_result_return_type<TargetAsyncResult, void_t<typename TargetAsyncResult::return_type>> { typedef typename TargetAsyncResult::return_type return_type; }; } // namespace detail template <typename T, typename Executor, typename Signature> class async_result<executor_binder<T, Executor>, Signature> : public detail::executor_binder_completion_handler_async_result< async_result<T, Signature>, Executor>, public detail::executor_binder_async_result_return_type< async_result<T, Signature>> { public: explicit async_result(executor_binder<T, Executor>& b) : detail::executor_binder_completion_handler_async_result< async_result<T, Signature>, Executor>(b.get()) { } template <typename Initiation> struct init_wrapper { template <typename Init> init_wrapper(const Executor& ex, Init&& init) : ex_(ex), initiation_(static_cast<Init&&>(init)) { } template <typename Handler, typename... Args> void operator()(Handler&& handler, Args&&... args) { static_cast<Initiation&&>(initiation_)( executor_binder<decay_t<Handler>, Executor>( executor_arg_t(), ex_, static_cast<Handler&&>(handler)), static_cast<Args&&>(args)...); } template <typename Handler, typename... Args> void operator()(Handler&& handler, Args&&... args) const { initiation_( executor_binder<decay_t<Handler>, Executor>( executor_arg_t(), ex_, static_cast<Handler&&>(handler)), static_cast<Args&&>(args)...); } Executor ex_; Initiation initiation_; }; template <typename Initiation, typename RawCompletionToken, typename... Args> static auto initiate(Initiation&& initiation, RawCompletionToken&& token, Args&&... args) -> decltype( async_initiate<T, Signature>( declval<init_wrapper<decay_t<Initiation>>>(), token.get(), static_cast<Args&&>(args)...)) { return async_initiate<T, Signature>( init_wrapper<decay_t<Initiation>>( token.get_executor(), static_cast<Initiation&&>(initiation)), token.get(), static_cast<Args&&>(args)...); } private: async_result(const async_result&) = delete; async_result& operator=(const async_result&) = delete; }; template <template <typename, typename> class Associator, typename T, typename Executor, typename DefaultCandidate> struct associator<Associator, executor_binder<T, Executor>, DefaultCandidate> : Associator<T, DefaultCandidate> { static typename Associator<T, DefaultCandidate>::type get( const executor_binder<T, Executor>& b) noexcept { return Associator<T, DefaultCandidate>::get(b.get()); } static auto get(const executor_binder<T, Executor>& b, const DefaultCandidate& c) noexcept -> decltype(Associator<T, DefaultCandidate>::get(b.get(), c)) { return Associator<T, DefaultCandidate>::get(b.get(), c); } }; template <typename T, typename Executor, typename Executor1> struct associated_executor<executor_binder<T, Executor>, Executor1> { typedef Executor type; static auto get(const executor_binder<T, Executor>& b, const Executor1& = Executor1()) noexcept -> decltype(b.get_executor()) { return b.get_executor(); } }; #endif // !defined(GENERATING_DOCUMENTATION) } // namespace asio } // namespace boost #include <boost/asio/detail/pop_options.hpp> #endif // BOOST_ASIO_BIND_EXECUTOR_HPP