관리-도구
편집 파일: basic_raw_socket.hpp
// // basic_raw_socket.hpp // ~~~~~~~~~~~~~~~~~~~~ // // Copyright (c) 2003-2024 Christopher M. Kohlhoff (chris at kohlhoff dot com) // // Distributed under the Boost Software License, Version 1.0. (See accompanying // file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt) // #ifndef BOOST_ASIO_BASIC_RAW_SOCKET_HPP #define BOOST_ASIO_BASIC_RAW_SOCKET_HPP #if defined(_MSC_VER) && (_MSC_VER >= 1200) # pragma once #endif // defined(_MSC_VER) && (_MSC_VER >= 1200) #include <boost/asio/detail/config.hpp> #include <cstddef> #include <boost/asio/basic_socket.hpp> #include <boost/asio/detail/handler_type_requirements.hpp> #include <boost/asio/detail/non_const_lvalue.hpp> #include <boost/asio/detail/throw_error.hpp> #include <boost/asio/detail/type_traits.hpp> #include <boost/asio/error.hpp> #include <boost/asio/detail/push_options.hpp> namespace boost { namespace asio { #if !defined(BOOST_ASIO_BASIC_RAW_SOCKET_FWD_DECL) #define BOOST_ASIO_BASIC_RAW_SOCKET_FWD_DECL // Forward declaration with defaulted arguments. template <typename Protocol, typename Executor = any_io_executor> class basic_raw_socket; #endif // !defined(BOOST_ASIO_BASIC_RAW_SOCKET_FWD_DECL) /// Provides raw-oriented socket functionality. /** * The basic_raw_socket class template provides asynchronous and blocking * raw-oriented socket functionality. * * @par Thread Safety * @e Distinct @e objects: Safe.@n * @e Shared @e objects: Unsafe. * * Synchronous @c send, @c send_to, @c receive, @c receive_from, @c connect, * and @c shutdown operations are thread safe with respect to each other, if * the underlying operating system calls are also thread safe. This means that * it is permitted to perform concurrent calls to these synchronous operations * on a single socket object. Other synchronous operations, such as @c open or * @c close, are not thread safe. */ template <typename Protocol, typename Executor> class basic_raw_socket : public basic_socket<Protocol, Executor> { private: class initiate_async_send; class initiate_async_send_to; class initiate_async_receive; class initiate_async_receive_from; public: /// The type of the executor associated with the object. typedef Executor executor_type; /// Rebinds the socket type to another executor. template <typename Executor1> struct rebind_executor { /// The socket type when rebound to the specified executor. typedef basic_raw_socket<Protocol, Executor1> other; }; /// The native representation of a socket. #if defined(GENERATING_DOCUMENTATION) typedef implementation_defined native_handle_type; #else typedef typename basic_socket<Protocol, Executor>::native_handle_type native_handle_type; #endif /// The protocol type. typedef Protocol protocol_type; /// The endpoint type. typedef typename Protocol::endpoint endpoint_type; /// Construct a basic_raw_socket without opening it. /** * This constructor creates a raw socket without opening it. The open() * function must be called before data can be sent or received on the socket. * * @param ex The I/O executor that the socket will use, by default, to * dispatch handlers for any asynchronous operations performed on the socket. */ explicit basic_raw_socket(const executor_type& ex) : basic_socket<Protocol, Executor>(ex) { } /// Construct a basic_raw_socket without opening it. /** * This constructor creates a raw socket without opening it. The open() * function must be called before data can be sent or received on the socket. * * @param context An execution context which provides the I/O executor that * the socket will use, by default, to dispatch handlers for any asynchronous * operations performed on the socket. */ template <typename ExecutionContext> explicit basic_raw_socket(ExecutionContext& context, constraint_t< is_convertible<ExecutionContext&, execution_context&>::value > = 0) : basic_socket<Protocol, Executor>(context) { } /// Construct and open a basic_raw_socket. /** * This constructor creates and opens a raw socket. * * @param ex The I/O executor that the socket will use, by default, to * dispatch handlers for any asynchronous operations performed on the socket. * * @param protocol An object specifying protocol parameters to be used. * * @throws boost::system::system_error Thrown on failure. */ basic_raw_socket(const executor_type& ex, const protocol_type& protocol) : basic_socket<Protocol, Executor>(ex, protocol) { } /// Construct and open a basic_raw_socket. /** * This constructor creates and opens a raw socket. * * @param context An execution context which provides the I/O executor that * the socket will use, by default, to dispatch handlers for any asynchronous * operations performed on the socket. * * @param protocol An object specifying protocol parameters to be used. * * @throws boost::system::system_error Thrown on failure. */ template <typename ExecutionContext> basic_raw_socket(ExecutionContext& context, const protocol_type& protocol, constraint_t< is_convertible<ExecutionContext&, execution_context&>::value, defaulted_constraint > = defaulted_constraint()) : basic_socket<Protocol, Executor>(context, protocol) { } /// Construct a basic_raw_socket, opening it and binding it to the given /// local endpoint. /** * This constructor creates a raw socket and automatically opens it bound * to the specified endpoint on the local machine. The protocol used is the * protocol associated with the given endpoint. * * @param ex The I/O executor that the socket will use, by default, to * dispatch handlers for any asynchronous operations performed on the socket. * * @param endpoint An endpoint on the local machine to which the raw * socket will be bound. * * @throws boost::system::system_error Thrown on failure. */ basic_raw_socket(const executor_type& ex, const endpoint_type& endpoint) : basic_socket<Protocol, Executor>(ex, endpoint) { } /// Construct a basic_raw_socket, opening it and binding it to the given /// local endpoint. /** * This constructor creates a raw socket and automatically opens it bound * to the specified endpoint on the local machine. The protocol used is the * protocol associated with the given endpoint. * * @param context An execution context which provides the I/O executor that * the socket will use, by default, to dispatch handlers for any asynchronous * operations performed on the socket. * * @param endpoint An endpoint on the local machine to which the raw * socket will be bound. * * @throws boost::system::system_error Thrown on failure. */ template <typename ExecutionContext> basic_raw_socket(ExecutionContext& context, const endpoint_type& endpoint, constraint_t< is_convertible<ExecutionContext&, execution_context&>::value > = 0) : basic_socket<Protocol, Executor>(context, endpoint) { } /// Construct a basic_raw_socket on an existing native socket. /** * This constructor creates a raw socket object to hold an existing * native socket. * * @param ex The I/O executor that the socket will use, by default, to * dispatch handlers for any asynchronous operations performed on the socket. * * @param protocol An object specifying protocol parameters to be used. * * @param native_socket The new underlying socket implementation. * * @throws boost::system::system_error Thrown on failure. */ basic_raw_socket(const executor_type& ex, const protocol_type& protocol, const native_handle_type& native_socket) : basic_socket<Protocol, Executor>(ex, protocol, native_socket) { } /// Construct a basic_raw_socket on an existing native socket. /** * This constructor creates a raw socket object to hold an existing * native socket. * * @param context An execution context which provides the I/O executor that * the socket will use, by default, to dispatch handlers for any asynchronous * operations performed on the socket. * * @param protocol An object specifying protocol parameters to be used. * * @param native_socket The new underlying socket implementation. * * @throws boost::system::system_error Thrown on failure. */ template <typename ExecutionContext> basic_raw_socket(ExecutionContext& context, const protocol_type& protocol, const native_handle_type& native_socket, constraint_t< is_convertible<ExecutionContext&, execution_context&>::value > = 0) : basic_socket<Protocol, Executor>(context, protocol, native_socket) { } /// Move-construct a basic_raw_socket from another. /** * This constructor moves a raw socket from one object to another. * * @param other The other basic_raw_socket object from which the move * will occur. * * @note Following the move, the moved-from object is in the same state as if * constructed using the @c basic_raw_socket(const executor_type&) * constructor. */ basic_raw_socket(basic_raw_socket&& other) noexcept : basic_socket<Protocol, Executor>(std::move(other)) { } /// Move-assign a basic_raw_socket from another. /** * This assignment operator moves a raw socket from one object to another. * * @param other The other basic_raw_socket object from which the move * will occur. * * @note Following the move, the moved-from object is in the same state as if * constructed using the @c basic_raw_socket(const executor_type&) * constructor. */ basic_raw_socket& operator=(basic_raw_socket&& other) { basic_socket<Protocol, Executor>::operator=(std::move(other)); return *this; } /// Move-construct a basic_raw_socket from a socket of another protocol /// type. /** * This constructor moves a raw socket from one object to another. * * @param other The other basic_raw_socket object from which the move * will occur. * * @note Following the move, the moved-from object is in the same state as if * constructed using the @c basic_raw_socket(const executor_type&) * constructor. */ template <typename Protocol1, typename Executor1> basic_raw_socket(basic_raw_socket<Protocol1, Executor1>&& other, constraint_t< is_convertible<Protocol1, Protocol>::value && is_convertible<Executor1, Executor>::value > = 0) : basic_socket<Protocol, Executor>(std::move(other)) { } /// Move-assign a basic_raw_socket from a socket of another protocol type. /** * This assignment operator moves a raw socket from one object to another. * * @param other The other basic_raw_socket object from which the move * will occur. * * @note Following the move, the moved-from object is in the same state as if * constructed using the @c basic_raw_socket(const executor_type&) * constructor. */ template <typename Protocol1, typename Executor1> constraint_t< is_convertible<Protocol1, Protocol>::value && is_convertible<Executor1, Executor>::value, basic_raw_socket& > operator=(basic_raw_socket<Protocol1, Executor1>&& other) { basic_socket<Protocol, Executor>::operator=(std::move(other)); return *this; } /// Destroys the socket. /** * This function destroys the socket, cancelling any outstanding asynchronous * operations associated with the socket as if by calling @c cancel. */ ~basic_raw_socket() { } /// Send some data on a connected socket. /** * This function is used to send data on the raw socket. The function call * will block until the data has been sent successfully or an error occurs. * * @param buffers One ore more data buffers to be sent on the socket. * * @returns The number of bytes sent. * * @throws boost::system::system_error Thrown on failure. * * @note The send operation can only be used with a connected socket. Use * the send_to function to send data on an unconnected raw socket. * * @par Example * To send a single data buffer use the @ref buffer function as follows: * @code socket.send(boost::asio::buffer(data, size)); @endcode * See the @ref buffer documentation for information on sending multiple * buffers in one go, and how to use it with arrays, boost::array or * std::vector. */ template <typename ConstBufferSequence> std::size_t send(const ConstBufferSequence& buffers) { boost::system::error_code ec; std::size_t s = this->impl_.get_service().send( this->impl_.get_implementation(), buffers, 0, ec); boost::asio::detail::throw_error(ec, "send"); return s; } /// Send some data on a connected socket. /** * This function is used to send data on the raw socket. The function call * will block until the data has been sent successfully or an error occurs. * * @param buffers One ore more data buffers to be sent on the socket. * * @param flags Flags specifying how the send call is to be made. * * @returns The number of bytes sent. * * @throws boost::system::system_error Thrown on failure. * * @note The send operation can only be used with a connected socket. Use * the send_to function to send data on an unconnected raw socket. */ template <typename ConstBufferSequence> std::size_t send(const ConstBufferSequence& buffers, socket_base::message_flags flags) { boost::system::error_code ec; std::size_t s = this->impl_.get_service().send( this->impl_.get_implementation(), buffers, flags, ec); boost::asio::detail::throw_error(ec, "send"); return s; } /// Send some data on a connected socket. /** * This function is used to send data on the raw socket. The function call * will block until the data has been sent successfully or an error occurs. * * @param buffers One or more data buffers to be sent on the socket. * * @param flags Flags specifying how the send call is to be made. * * @param ec Set to indicate what error occurred, if any. * * @returns The number of bytes sent. * * @note The send operation can only be used with a connected socket. Use * the send_to function to send data on an unconnected raw socket. */ template <typename ConstBufferSequence> std::size_t send(const ConstBufferSequence& buffers, socket_base::message_flags flags, boost::system::error_code& ec) { return this->impl_.get_service().send( this->impl_.get_implementation(), buffers, flags, ec); } /// Start an asynchronous send on a connected socket. /** * This function is used to asynchronously send data on the raw socket. It is * an initiating function for an @ref asynchronous_operation, and always * returns immediately. * * @param buffers One or more data buffers to be sent on the socket. Although * the buffers object may be copied as necessary, ownership of the underlying * memory blocks is retained by the caller, which must guarantee that they * remain valid until the completion handler is called. * * @param token The @ref completion_token that will be used to produce a * completion handler, which will be called when the send completes. * Potential completion tokens include @ref use_future, @ref use_awaitable, * @ref yield_context, or a function object with the correct completion * signature. The function signature of the completion handler must be: * @code void handler( * const boost::system::error_code& error, // Result of operation. * std::size_t bytes_transferred // Number of bytes sent. * ); @endcode * Regardless of whether the asynchronous operation completes immediately or * not, the completion handler will not be invoked from within this function. * On immediate completion, invocation of the handler will be performed in a * manner equivalent to using boost::asio::post(). * * @par Completion Signature * @code void(boost::system::error_code, std::size_t) @endcode * * @note The async_send operation can only be used with a connected socket. * Use the async_send_to function to send data on an unconnected raw * socket. * * @par Example * To send a single data buffer use the @ref buffer function as follows: * @code * socket.async_send(boost::asio::buffer(data, size), handler); * @endcode * See the @ref buffer documentation for information on sending multiple * buffers in one go, and how to use it with arrays, boost::array or * std::vector. * * @par Per-Operation Cancellation * On POSIX or Windows operating systems, this asynchronous operation supports * cancellation for the following boost::asio::cancellation_type values: * * @li @c cancellation_type::terminal * * @li @c cancellation_type::partial * * @li @c cancellation_type::total */ template <typename ConstBufferSequence, BOOST_ASIO_COMPLETION_TOKEN_FOR(void (boost::system::error_code, std::size_t)) WriteToken = default_completion_token_t<executor_type>> auto async_send(const ConstBufferSequence& buffers, WriteToken&& token = default_completion_token_t<executor_type>()) -> decltype( async_initiate<WriteToken, void (boost::system::error_code, std::size_t)>( declval<initiate_async_send>(), token, buffers, socket_base::message_flags(0))) { return async_initiate<WriteToken, void (boost::system::error_code, std::size_t)>( initiate_async_send(this), token, buffers, socket_base::message_flags(0)); } /// Start an asynchronous send on a connected socket. /** * This function is used to asynchronously send data on the raw socket. It is * an initiating function for an @ref asynchronous_operation, and always * returns immediately. * * @param buffers One or more data buffers to be sent on the socket. Although * the buffers object may be copied as necessary, ownership of the underlying * memory blocks is retained by the caller, which must guarantee that they * remain valid until the completion handler is called. * * @param flags Flags specifying how the send call is to be made. * * @param token The @ref completion_token that will be used to produce a * completion handler, which will be called when the send completes. * Potential completion tokens include @ref use_future, @ref use_awaitable, * @ref yield_context, or a function object with the correct completion * signature. The function signature of the completion handler must be: * @code void handler( * const boost::system::error_code& error, // Result of operation. * std::size_t bytes_transferred // Number of bytes sent. * ); @endcode * Regardless of whether the asynchronous operation completes immediately or * not, the completion handler will not be invoked from within this function. * On immediate completion, invocation of the handler will be performed in a * manner equivalent to using boost::asio::post(). * * @par Completion Signature * @code void(boost::system::error_code, std::size_t) @endcode * * @note The async_send operation can only be used with a connected socket. * Use the async_send_to function to send data on an unconnected raw * socket. * * @par Per-Operation Cancellation * On POSIX or Windows operating systems, this asynchronous operation supports * cancellation for the following boost::asio::cancellation_type values: * * @li @c cancellation_type::terminal * * @li @c cancellation_type::partial * * @li @c cancellation_type::total */ template <typename ConstBufferSequence, BOOST_ASIO_COMPLETION_TOKEN_FOR(void (boost::system::error_code, std::size_t)) WriteToken = default_completion_token_t<executor_type>> auto async_send(const ConstBufferSequence& buffers, socket_base::message_flags flags, WriteToken&& token = default_completion_token_t<executor_type>()) -> decltype( async_initiate<WriteToken, void (boost::system::error_code, std::size_t)>( declval<initiate_async_send>(), token, buffers, flags)) { return async_initiate<WriteToken, void (boost::system::error_code, std::size_t)>( initiate_async_send(this), token, buffers, flags); } /// Send raw data to the specified endpoint. /** * This function is used to send raw data to the specified remote endpoint. * The function call will block until the data has been sent successfully or * an error occurs. * * @param buffers One or more data buffers to be sent to the remote endpoint. * * @param destination The remote endpoint to which the data will be sent. * * @returns The number of bytes sent. * * @throws boost::system::system_error Thrown on failure. * * @par Example * To send a single data buffer use the @ref buffer function as follows: * @code * boost::asio::ip::udp::endpoint destination( * boost::asio::ip::address::from_string("1.2.3.4"), 12345); * socket.send_to(boost::asio::buffer(data, size), destination); * @endcode * See the @ref buffer documentation for information on sending multiple * buffers in one go, and how to use it with arrays, boost::array or * std::vector. */ template <typename ConstBufferSequence> std::size_t send_to(const ConstBufferSequence& buffers, const endpoint_type& destination) { boost::system::error_code ec; std::size_t s = this->impl_.get_service().send_to( this->impl_.get_implementation(), buffers, destination, 0, ec); boost::asio::detail::throw_error(ec, "send_to"); return s; } /// Send raw data to the specified endpoint. /** * This function is used to send raw data to the specified remote endpoint. * The function call will block until the data has been sent successfully or * an error occurs. * * @param buffers One or more data buffers to be sent to the remote endpoint. * * @param destination The remote endpoint to which the data will be sent. * * @param flags Flags specifying how the send call is to be made. * * @returns The number of bytes sent. * * @throws boost::system::system_error Thrown on failure. */ template <typename ConstBufferSequence> std::size_t send_to(const ConstBufferSequence& buffers, const endpoint_type& destination, socket_base::message_flags flags) { boost::system::error_code ec; std::size_t s = this->impl_.get_service().send_to( this->impl_.get_implementation(), buffers, destination, flags, ec); boost::asio::detail::throw_error(ec, "send_to"); return s; } /// Send raw data to the specified endpoint. /** * This function is used to send raw data to the specified remote endpoint. * The function call will block until the data has been sent successfully or * an error occurs. * * @param buffers One or more data buffers to be sent to the remote endpoint. * * @param destination The remote endpoint to which the data will be sent. * * @param flags Flags specifying how the send call is to be made. * * @param ec Set to indicate what error occurred, if any. * * @returns The number of bytes sent. */ template <typename ConstBufferSequence> std::size_t send_to(const ConstBufferSequence& buffers, const endpoint_type& destination, socket_base::message_flags flags, boost::system::error_code& ec) { return this->impl_.get_service().send_to(this->impl_.get_implementation(), buffers, destination, flags, ec); } /// Start an asynchronous send. /** * This function is used to asynchronously send raw data to the specified * remote endpoint. It is an initiating function for an @ref * asynchronous_operation, and always returns immediately. * * @param buffers One or more data buffers to be sent to the remote endpoint. * Although the buffers object may be copied as necessary, ownership of the * underlying memory blocks is retained by the caller, which must guarantee * that they remain valid until the completion handler is called. * * @param destination The remote endpoint to which the data will be sent. * Copies will be made of the endpoint as required. * * @param token The @ref completion_token that will be used to produce a * completion handler, which will be called when the send completes. * Potential completion tokens include @ref use_future, @ref use_awaitable, * @ref yield_context, or a function object with the correct completion * signature. The function signature of the completion handler must be: * @code void handler( * const boost::system::error_code& error, // Result of operation. * std::size_t bytes_transferred // Number of bytes sent. * ); @endcode * Regardless of whether the asynchronous operation completes immediately or * not, the completion handler will not be invoked from within this function. * On immediate completion, invocation of the handler will be performed in a * manner equivalent to using boost::asio::post(). * * @par Completion Signature * @code void(boost::system::error_code, std::size_t) @endcode * * @par Example * To send a single data buffer use the @ref buffer function as follows: * @code * boost::asio::ip::udp::endpoint destination( * boost::asio::ip::address::from_string("1.2.3.4"), 12345); * socket.async_send_to( * boost::asio::buffer(data, size), destination, handler); * @endcode * See the @ref buffer documentation for information on sending multiple * buffers in one go, and how to use it with arrays, boost::array or * std::vector. * * @par Per-Operation Cancellation * On POSIX or Windows operating systems, this asynchronous operation supports * cancellation for the following boost::asio::cancellation_type values: * * @li @c cancellation_type::terminal * * @li @c cancellation_type::partial * * @li @c cancellation_type::total */ template <typename ConstBufferSequence, BOOST_ASIO_COMPLETION_TOKEN_FOR(void (boost::system::error_code, std::size_t)) WriteToken = default_completion_token_t<executor_type>> auto async_send_to(const ConstBufferSequence& buffers, const endpoint_type& destination, WriteToken&& token = default_completion_token_t<executor_type>()) -> decltype( async_initiate<WriteToken, void (boost::system::error_code, std::size_t)>( declval<initiate_async_send_to>(), token, buffers, destination, socket_base::message_flags(0))) { return async_initiate<WriteToken, void (boost::system::error_code, std::size_t)>( initiate_async_send_to(this), token, buffers, destination, socket_base::message_flags(0)); } /// Start an asynchronous send. /** * This function is used to asynchronously send raw data to the specified * remote endpoint. It is an initiating function for an @ref * asynchronous_operation, and always returns immediately. * * @param buffers One or more data buffers to be sent to the remote endpoint. * Although the buffers object may be copied as necessary, ownership of the * underlying memory blocks is retained by the caller, which must guarantee * that they remain valid until the completion handler is called. * * @param flags Flags specifying how the send call is to be made. * * @param destination The remote endpoint to which the data will be sent. * Copies will be made of the endpoint as required. * * @param token The @ref completion_token that will be used to produce a * completion handler, which will be called when the send completes. * Potential completion tokens include @ref use_future, @ref use_awaitable, * @ref yield_context, or a function object with the correct completion * signature. The function signature of the completion handler must be: * @code void handler( * const boost::system::error_code& error, // Result of operation. * std::size_t bytes_transferred // Number of bytes sent. * ); @endcode * Regardless of whether the asynchronous operation completes immediately or * not, the completion handler will not be invoked from within this function. * On immediate completion, invocation of the handler will be performed in a * manner equivalent to using boost::asio::post(). * * @par Completion Signature * @code void(boost::system::error_code, std::size_t) @endcode * * @par Per-Operation Cancellation * On POSIX or Windows operating systems, this asynchronous operation supports * cancellation for the following boost::asio::cancellation_type values: * * @li @c cancellation_type::terminal * * @li @c cancellation_type::partial * * @li @c cancellation_type::total */ template <typename ConstBufferSequence, BOOST_ASIO_COMPLETION_TOKEN_FOR(void (boost::system::error_code, std::size_t)) WriteToken = default_completion_token_t<executor_type>> auto async_send_to(const ConstBufferSequence& buffers, const endpoint_type& destination, socket_base::message_flags flags, WriteToken&& token = default_completion_token_t<executor_type>()) -> decltype( async_initiate<WriteToken, void (boost::system::error_code, std::size_t)>( declval<initiate_async_send_to>(), token, buffers, destination, flags)) { return async_initiate<WriteToken, void (boost::system::error_code, std::size_t)>( initiate_async_send_to(this), token, buffers, destination, flags); } /// Receive some data on a connected socket. /** * This function is used to receive data on the raw socket. The function * call will block until data has been received successfully or an error * occurs. * * @param buffers One or more buffers into which the data will be received. * * @returns The number of bytes received. * * @throws boost::system::system_error Thrown on failure. * * @note The receive operation can only be used with a connected socket. Use * the receive_from function to receive data on an unconnected raw * socket. * * @par Example * To receive into a single data buffer use the @ref buffer function as * follows: * @code socket.receive(boost::asio::buffer(data, size)); @endcode * See the @ref buffer documentation for information on receiving into * multiple buffers in one go, and how to use it with arrays, boost::array or * std::vector. */ template <typename MutableBufferSequence> std::size_t receive(const MutableBufferSequence& buffers) { boost::system::error_code ec; std::size_t s = this->impl_.get_service().receive( this->impl_.get_implementation(), buffers, 0, ec); boost::asio::detail::throw_error(ec, "receive"); return s; } /// Receive some data on a connected socket. /** * This function is used to receive data on the raw socket. The function * call will block until data has been received successfully or an error * occurs. * * @param buffers One or more buffers into which the data will be received. * * @param flags Flags specifying how the receive call is to be made. * * @returns The number of bytes received. * * @throws boost::system::system_error Thrown on failure. * * @note The receive operation can only be used with a connected socket. Use * the receive_from function to receive data on an unconnected raw * socket. */ template <typename MutableBufferSequence> std::size_t receive(const MutableBufferSequence& buffers, socket_base::message_flags flags) { boost::system::error_code ec; std::size_t s = this->impl_.get_service().receive( this->impl_.get_implementation(), buffers, flags, ec); boost::asio::detail::throw_error(ec, "receive"); return s; } /// Receive some data on a connected socket. /** * This function is used to receive data on the raw socket. The function * call will block until data has been received successfully or an error * occurs. * * @param buffers One or more buffers into which the data will be received. * * @param flags Flags specifying how the receive call is to be made. * * @param ec Set to indicate what error occurred, if any. * * @returns The number of bytes received. * * @note The receive operation can only be used with a connected socket. Use * the receive_from function to receive data on an unconnected raw * socket. */ template <typename MutableBufferSequence> std::size_t receive(const MutableBufferSequence& buffers, socket_base::message_flags flags, boost::system::error_code& ec) { return this->impl_.get_service().receive( this->impl_.get_implementation(), buffers, flags, ec); } /// Start an asynchronous receive on a connected socket. /** * This function is used to asynchronously receive data from the raw * socket. It is an initiating function for an @ref asynchronous_operation, * and always returns immediately. * * @param buffers One or more buffers into which the data will be received. * Although the buffers object may be copied as necessary, ownership of the * underlying memory blocks is retained by the caller, which must guarantee * that they remain valid until the completion handler is called. * * @param token The @ref completion_token that will be used to produce a * completion handler, which will be called when the receive completes. * Potential completion tokens include @ref use_future, @ref use_awaitable, * @ref yield_context, or a function object with the correct completion * signature. The function signature of the completion handler must be: * @code void handler( * const boost::system::error_code& error, // Result of operation. * std::size_t bytes_transferred // Number of bytes received. * ); @endcode * Regardless of whether the asynchronous operation completes immediately or * not, the completion handler will not be invoked from within this function. * On immediate completion, invocation of the handler will be performed in a * manner equivalent to using boost::asio::post(). * * @par Completion Signature * @code void(boost::system::error_code, std::size_t) @endcode * * @note The async_receive operation can only be used with a connected socket. * Use the async_receive_from function to receive data on an unconnected * raw socket. * * @par Example * To receive into a single data buffer use the @ref buffer function as * follows: * @code * socket.async_receive(boost::asio::buffer(data, size), handler); * @endcode * See the @ref buffer documentation for information on receiving into * multiple buffers in one go, and how to use it with arrays, boost::array or * std::vector. * * @par Per-Operation Cancellation * On POSIX or Windows operating systems, this asynchronous operation supports * cancellation for the following boost::asio::cancellation_type values: * * @li @c cancellation_type::terminal * * @li @c cancellation_type::partial * * @li @c cancellation_type::total */ template <typename MutableBufferSequence, BOOST_ASIO_COMPLETION_TOKEN_FOR(void (boost::system::error_code, std::size_t)) ReadToken = default_completion_token_t<executor_type>> auto async_receive(const MutableBufferSequence& buffers, ReadToken&& token = default_completion_token_t<executor_type>()) -> decltype( async_initiate<ReadToken, void (boost::system::error_code, std::size_t)>( declval<initiate_async_receive>(), token, buffers, socket_base::message_flags(0))) { return async_initiate<ReadToken, void (boost::system::error_code, std::size_t)>( initiate_async_receive(this), token, buffers, socket_base::message_flags(0)); } /// Start an asynchronous receive on a connected socket. /** * This function is used to asynchronously receive data from the raw * socket. It is an initiating function for an @ref asynchronous_operation, * and always returns immediately. * * @param buffers One or more buffers into which the data will be received. * Although the buffers object may be copied as necessary, ownership of the * underlying memory blocks is retained by the caller, which must guarantee * that they remain valid until the completion handler is called. * * @param flags Flags specifying how the receive call is to be made. * * @param token The @ref completion_token that will be used to produce a * completion handler, which will be called when the receive completes. * Potential completion tokens include @ref use_future, @ref use_awaitable, * @ref yield_context, or a function object with the correct completion * signature. The function signature of the completion handler must be: * @code void handler( * const boost::system::error_code& error, // Result of operation. * std::size_t bytes_transferred // Number of bytes received. * ); @endcode * Regardless of whether the asynchronous operation completes immediately or * not, the completion handler will not be invoked from within this function. * On immediate completion, invocation of the handler will be performed in a * manner equivalent to using boost::asio::post(). * * @par Completion Signature * @code void(boost::system::error_code, std::size_t) @endcode * * @note The async_receive operation can only be used with a connected socket. * Use the async_receive_from function to receive data on an unconnected * raw socket. * * @par Per-Operation Cancellation * On POSIX or Windows operating systems, this asynchronous operation supports * cancellation for the following boost::asio::cancellation_type values: * * @li @c cancellation_type::terminal * * @li @c cancellation_type::partial * * @li @c cancellation_type::total */ template <typename MutableBufferSequence, BOOST_ASIO_COMPLETION_TOKEN_FOR(void (boost::system::error_code, std::size_t)) ReadToken = default_completion_token_t<executor_type>> auto async_receive(const MutableBufferSequence& buffers, socket_base::message_flags flags, ReadToken&& token = default_completion_token_t<executor_type>()) -> decltype( async_initiate<ReadToken, void (boost::system::error_code, std::size_t)>( declval<initiate_async_receive>(), token, buffers, flags)) { return async_initiate<ReadToken, void (boost::system::error_code, std::size_t)>( initiate_async_receive(this), token, buffers, flags); } /// Receive raw data with the endpoint of the sender. /** * This function is used to receive raw data. The function call will block * until data has been received successfully or an error occurs. * * @param buffers One or more buffers into which the data will be received. * * @param sender_endpoint An endpoint object that receives the endpoint of * the remote sender of the data. * * @returns The number of bytes received. * * @throws boost::system::system_error Thrown on failure. * * @par Example * To receive into a single data buffer use the @ref buffer function as * follows: * @code * boost::asio::ip::udp::endpoint sender_endpoint; * socket.receive_from( * boost::asio::buffer(data, size), sender_endpoint); * @endcode * See the @ref buffer documentation for information on receiving into * multiple buffers in one go, and how to use it with arrays, boost::array or * std::vector. */ template <typename MutableBufferSequence> std::size_t receive_from(const MutableBufferSequence& buffers, endpoint_type& sender_endpoint) { boost::system::error_code ec; std::size_t s = this->impl_.get_service().receive_from( this->impl_.get_implementation(), buffers, sender_endpoint, 0, ec); boost::asio::detail::throw_error(ec, "receive_from"); return s; } /// Receive raw data with the endpoint of the sender. /** * This function is used to receive raw data. The function call will block * until data has been received successfully or an error occurs. * * @param buffers One or more buffers into which the data will be received. * * @param sender_endpoint An endpoint object that receives the endpoint of * the remote sender of the data. * * @param flags Flags specifying how the receive call is to be made. * * @returns The number of bytes received. * * @throws boost::system::system_error Thrown on failure. */ template <typename MutableBufferSequence> std::size_t receive_from(const MutableBufferSequence& buffers, endpoint_type& sender_endpoint, socket_base::message_flags flags) { boost::system::error_code ec; std::size_t s = this->impl_.get_service().receive_from( this->impl_.get_implementation(), buffers, sender_endpoint, flags, ec); boost::asio::detail::throw_error(ec, "receive_from"); return s; } /// Receive raw data with the endpoint of the sender. /** * This function is used to receive raw data. The function call will block * until data has been received successfully or an error occurs. * * @param buffers One or more buffers into which the data will be received. * * @param sender_endpoint An endpoint object that receives the endpoint of * the remote sender of the data. * * @param flags Flags specifying how the receive call is to be made. * * @param ec Set to indicate what error occurred, if any. * * @returns The number of bytes received. */ template <typename MutableBufferSequence> std::size_t receive_from(const MutableBufferSequence& buffers, endpoint_type& sender_endpoint, socket_base::message_flags flags, boost::system::error_code& ec) { return this->impl_.get_service().receive_from( this->impl_.get_implementation(), buffers, sender_endpoint, flags, ec); } /// Start an asynchronous receive. /** * This function is used to asynchronously receive raw data. It is an * initiating function for an @ref asynchronous_operation, and always returns * immediately. * * @param buffers One or more buffers into which the data will be received. * Although the buffers object may be copied as necessary, ownership of the * underlying memory blocks is retained by the caller, which must guarantee * that they remain valid until the completion handler is called. * * @param sender_endpoint An endpoint object that receives the endpoint of * the remote sender of the data. Ownership of the sender_endpoint object * is retained by the caller, which must guarantee that it is valid until the * completion handler is called. * * @param token The @ref completion_token that will be used to produce a * completion handler, which will be called when the receive completes. * Potential completion tokens include @ref use_future, @ref use_awaitable, * @ref yield_context, or a function object with the correct completion * signature. The function signature of the completion handler must be: * @code void handler( * const boost::system::error_code& error, // Result of operation. * std::size_t bytes_transferred // Number of bytes received. * ); @endcode * Regardless of whether the asynchronous operation completes immediately or * not, the completion handler will not be invoked from within this function. * On immediate completion, invocation of the handler will be performed in a * manner equivalent to using boost::asio::post(). * * @par Completion Signature * @code void(boost::system::error_code, std::size_t) @endcode * * @par Example * To receive into a single data buffer use the @ref buffer function as * follows: * @code socket.async_receive_from( * boost::asio::buffer(data, size), 0, sender_endpoint, handler); @endcode * See the @ref buffer documentation for information on receiving into * multiple buffers in one go, and how to use it with arrays, boost::array or * std::vector. * * @par Per-Operation Cancellation * On POSIX or Windows operating systems, this asynchronous operation supports * cancellation for the following boost::asio::cancellation_type values: * * @li @c cancellation_type::terminal * * @li @c cancellation_type::partial * * @li @c cancellation_type::total */ template <typename MutableBufferSequence, BOOST_ASIO_COMPLETION_TOKEN_FOR(void (boost::system::error_code, std::size_t)) ReadToken = default_completion_token_t<executor_type>> auto async_receive_from(const MutableBufferSequence& buffers, endpoint_type& sender_endpoint, ReadToken&& token = default_completion_token_t<executor_type>()) -> decltype( async_initiate<ReadToken, void (boost::system::error_code, std::size_t)>( declval<initiate_async_receive_from>(), token, buffers, &sender_endpoint, socket_base::message_flags(0))) { return async_initiate<ReadToken, void (boost::system::error_code, std::size_t)>( initiate_async_receive_from(this), token, buffers, &sender_endpoint, socket_base::message_flags(0)); } /// Start an asynchronous receive. /** * This function is used to asynchronously receive raw data. It is an * initiating function for an @ref asynchronous_operation, and always returns * immediately. * * @param buffers One or more buffers into which the data will be received. * Although the buffers object may be copied as necessary, ownership of the * underlying memory blocks is retained by the caller, which must guarantee * that they remain valid until the completion handler is called. * * @param sender_endpoint An endpoint object that receives the endpoint of * the remote sender of the data. Ownership of the sender_endpoint object * is retained by the caller, which must guarantee that it is valid until the * completion handler is called. * * @param flags Flags specifying how the receive call is to be made. * * @param token The @ref completion_token that will be used to produce a * completion handler, which will be called when the receive completes. * Potential completion tokens include @ref use_future, @ref use_awaitable, * @ref yield_context, or a function object with the correct completion * signature. The function signature of the completion handler must be: * @code void handler( * const boost::system::error_code& error, // Result of operation. * std::size_t bytes_transferred // Number of bytes received. * ); @endcode * Regardless of whether the asynchronous operation completes immediately or * not, the completion handler will not be invoked from within this function. * On immediate completion, invocation of the handler will be performed in a * manner equivalent to using boost::asio::post(). * * @par Completion Signature * @code void(boost::system::error_code, std::size_t) @endcode * * @par Per-Operation Cancellation * On POSIX or Windows operating systems, this asynchronous operation supports * cancellation for the following boost::asio::cancellation_type values: * * @li @c cancellation_type::terminal * * @li @c cancellation_type::partial * * @li @c cancellation_type::total */ template <typename MutableBufferSequence, BOOST_ASIO_COMPLETION_TOKEN_FOR(void (boost::system::error_code, std::size_t)) ReadToken = default_completion_token_t<executor_type>> auto async_receive_from(const MutableBufferSequence& buffers, endpoint_type& sender_endpoint, socket_base::message_flags flags, ReadToken&& token = default_completion_token_t<executor_type>()) -> decltype( async_initiate<ReadToken, void (boost::system::error_code, std::size_t)>( declval<initiate_async_receive_from>(), token, buffers, &sender_endpoint, flags)) { return async_initiate<ReadToken, void (boost::system::error_code, std::size_t)>( initiate_async_receive_from(this), token, buffers, &sender_endpoint, flags); } private: // Disallow copying and assignment. basic_raw_socket(const basic_raw_socket&) = delete; basic_raw_socket& operator=(const basic_raw_socket&) = delete; class initiate_async_send { public: typedef Executor executor_type; explicit initiate_async_send(basic_raw_socket* self) : self_(self) { } const executor_type& get_executor() const noexcept { return self_->get_executor(); } template <typename WriteHandler, typename ConstBufferSequence> void operator()(WriteHandler&& handler, const ConstBufferSequence& buffers, socket_base::message_flags flags) const { // If you get an error on the following line it means that your handler // does not meet the documented type requirements for a WriteHandler. BOOST_ASIO_WRITE_HANDLER_CHECK(WriteHandler, handler) type_check; detail::non_const_lvalue<WriteHandler> handler2(handler); self_->impl_.get_service().async_send( self_->impl_.get_implementation(), buffers, flags, handler2.value, self_->impl_.get_executor()); } private: basic_raw_socket* self_; }; class initiate_async_send_to { public: typedef Executor executor_type; explicit initiate_async_send_to(basic_raw_socket* self) : self_(self) { } const executor_type& get_executor() const noexcept { return self_->get_executor(); } template <typename WriteHandler, typename ConstBufferSequence> void operator()(WriteHandler&& handler, const ConstBufferSequence& buffers, const endpoint_type& destination, socket_base::message_flags flags) const { // If you get an error on the following line it means that your handler // does not meet the documented type requirements for a WriteHandler. BOOST_ASIO_WRITE_HANDLER_CHECK(WriteHandler, handler) type_check; detail::non_const_lvalue<WriteHandler> handler2(handler); self_->impl_.get_service().async_send_to( self_->impl_.get_implementation(), buffers, destination, flags, handler2.value, self_->impl_.get_executor()); } private: basic_raw_socket* self_; }; class initiate_async_receive { public: typedef Executor executor_type; explicit initiate_async_receive(basic_raw_socket* self) : self_(self) { } const executor_type& get_executor() const noexcept { return self_->get_executor(); } template <typename ReadHandler, typename MutableBufferSequence> void operator()(ReadHandler&& handler, const MutableBufferSequence& buffers, socket_base::message_flags flags) const { // If you get an error on the following line it means that your handler // does not meet the documented type requirements for a ReadHandler. BOOST_ASIO_READ_HANDLER_CHECK(ReadHandler, handler) type_check; detail::non_const_lvalue<ReadHandler> handler2(handler); self_->impl_.get_service().async_receive( self_->impl_.get_implementation(), buffers, flags, handler2.value, self_->impl_.get_executor()); } private: basic_raw_socket* self_; }; class initiate_async_receive_from { public: typedef Executor executor_type; explicit initiate_async_receive_from(basic_raw_socket* self) : self_(self) { } const executor_type& get_executor() const noexcept { return self_->get_executor(); } template <typename ReadHandler, typename MutableBufferSequence> void operator()(ReadHandler&& handler, const MutableBufferSequence& buffers, endpoint_type* sender_endpoint, socket_base::message_flags flags) const { // If you get an error on the following line it means that your handler // does not meet the documented type requirements for a ReadHandler. BOOST_ASIO_READ_HANDLER_CHECK(ReadHandler, handler) type_check; detail::non_const_lvalue<ReadHandler> handler2(handler); self_->impl_.get_service().async_receive_from( self_->impl_.get_implementation(), buffers, *sender_endpoint, flags, handler2.value, self_->impl_.get_executor()); } private: basic_raw_socket* self_; }; }; } // namespace asio } // namespace boost #include <boost/asio/detail/pop_options.hpp> #endif // BOOST_ASIO_BASIC_RAW_SOCKET_HPP