관리-도구
편집 파일: chebyshev.cpython-311.pyc
� �܋fL� � �� � d Z ddlZddlmZ ddlmZ ddlm Z ddlmZ g d�Z e j Zd� Zd � Zd � Zd� Zd� Zd � Zd� Zd� Z ej ddg� � Z ej dg� � Z ej dg� � Z ej ddg� � Zd� Zd� Zd� Zd� Z d� Z!d� Z"d� Z#d1d�Z$d2d�Z%dg dddfd�Z&d3d�Z'd� Z(d� Z)d � Z*d!� Z+d"� Z,d#� Z-d$� Z.d4d&�Z/d'� Z0d(� Z1d5d*�Z2d+� Z3d,� Z4d-� Z5d.� Z6 G d/� d0e� � Z7dS )6a� ==================================================== Chebyshev Series (:mod:`numpy.polynomial.chebyshev`) ==================================================== This module provides a number of objects (mostly functions) useful for dealing with Chebyshev series, including a `Chebyshev` class that encapsulates the usual arithmetic operations. (General information on how this module represents and works with such polynomials is in the docstring for its "parent" sub-package, `numpy.polynomial`). Classes ------- .. autosummary:: :toctree: generated/ Chebyshev Constants --------- .. autosummary:: :toctree: generated/ chebdomain chebzero chebone chebx Arithmetic ---------- .. autosummary:: :toctree: generated/ chebadd chebsub chebmulx chebmul chebdiv chebpow chebval chebval2d chebval3d chebgrid2d chebgrid3d Calculus -------- .. autosummary:: :toctree: generated/ chebder chebint Misc Functions -------------- .. autosummary:: :toctree: generated/ chebfromroots chebroots chebvander chebvander2d chebvander3d chebgauss chebweight chebcompanion chebfit chebpts1 chebpts2 chebtrim chebline cheb2poly poly2cheb chebinterpolate See also -------- `numpy.polynomial` Notes ----- The implementations of multiplication, division, integration, and differentiation use the algebraic identities [1]_: .. math:: T_n(x) = \frac{z^n + z^{-n}}{2} \\ z\frac{dx}{dz} = \frac{z - z^{-1}}{2}. where .. math:: x = \frac{z + z^{-1}}{2}. These identities allow a Chebyshev series to be expressed as a finite, symmetric Laurent series. In this module, this sort of Laurent series is referred to as a "z-series." References ---------- .. [1] A. T. Benjamin, et al., "Combinatorial Trigonometry with Chebyshev Polynomials," *Journal of Statistical Planning and Inference 14*, 2008 (https://web.archive.org/web/20080221202153/https://www.math.hmc.edu/~benjamin/papers/CombTrig.pdf, pg. 4) � N)�normalize_axis_index� )� polyutils)�ABCPolyBase)"�chebzero�chebone�chebx� chebdomain�chebline�chebadd�chebsub�chebmulx�chebmul�chebdiv�chebpow�chebval�chebder�chebint� cheb2poly� poly2cheb� chebfromroots� chebvander�chebfit�chebtrim� chebroots�chebpts1�chebpts2� Chebyshev� chebval2d� chebval3d� chebgrid2d� chebgrid3d�chebvander2d�chebvander3d� chebcompanion� chebgauss� chebweight�chebinterpolatec � � | j }t j d|z dz | j �� � }| dz ||dz d�<